Abstract
Three strains of laboratory rats (Lewis, Wistar and Sprague–Dawley) commonly used for the study of movement disorders differ in gait traits. Sialic acid containing glycosphingolipids, called gangliosides, are abundant in the nervous system, where they affect numerous neurochemical events. Cerebellum plays the key role in the integration of body movements. This study investigated glycosphingolipid phenotypes with the hypothesis that they differ in cerebella of the three rat strains. In addition, forebrain and brain stem glycosphingolipid phenotypes were determined. Total glycosphingolipid fractions (neutral and acidic) were analysed by high performance thin-layer chromatography (HPTLC). Complex gangliosides were detected with HPTLC immunostaining by using cholera toxin B subunit after the neuraminidase pretreatment. The most significant differences were found in the cerebellum glycosphingolipid content. Lewis rats showed three fold higher monohexaosylceramides (galactosylceramide + sulfatide)/gangliosides ratio compared to Wistar rats. On the other hand, the cerebellum of Wistar rats contained an increased content of complex gangliosides GD1b, GT1b and GQ1b, fourfold, twofold and tenfold, respectively, compared to Lewis rats. This study shows that Wistar and Lewis rat strains have pronounced differences in glycosphingolipid content and the composition of cerebellum.
This is a preview of subscription content, access via your institution.


REFERENCES
Brimberg, L., Flaisher-Grinberg, S., Schilman, E.A., and Joel, D., Behav. Brain. Res., 2007, vol. 179, pp. 141–151.
Koopmans, G.C., Deumens, R., Brook, G., Gerver, J., Honig, W.M., Hamers, F.P., and Joosten, E.A., Physiol. Behav., 2007, vol. 92, pp. 993–1001.
Clemens, L.E., Jansson, E.K., Portal, E., Riess, O., and Nguyen, H.P., Genes. Brain. Behav., 2014, vol. 13, pp. 305–321.
Ganguly, A., McEwen, C., Troy, E.L., Colburn, R.W., Caggiano, A.O., Schallert, T.J., and Parry, T.T., J. Neurosci. Methods., 2017, vol. 275, pp. 25–32.
Tang, X., Liu, X., Yang, L., and Sanford, L.D., Behav. Brain. Res., 2005, vol. 160, pp. 60–71.
Webb, A.A., Gowribai, K., and Muir, G.D., Behav. Brain. Res., 2003, vol. 144, pp. 143–156.
Borner, K., Nygren, H., Hagenhoff, B., Malmberg, P., Tallarek, E., and Mansson, J.E., Biochim. Biophys. Acta., 2006, vol. 1761, pp. 335–344.
Dawson, G., Biochim. Biophys. Acta., 2015, vol. 1851, pp. 1026–1039.
Li, Q., Bozek, K., Xu, C., Guo, Y., Sun, J., Pääbo, S., Sherwood, C.C., Hof, P.R., Ely, J.J., Li, Y., Willmitzer, L., Giavalisco, P., and Khaitovich, P., Mol. Biol. Evol., 2017, vol. 34, pp. 1155–1166.
Varki, A., FASEB. J., 1997, vol. 11, pp. 248–255.
Pernber, Z., Richter, K., Mansson, J.E., and Nygren, H., Biochim. Biophys. Acta., 2007, vol. 1771, pp. 202–209.
Hakomori, S.I., Biochim. Biophys. Acta., 2008, vol. 1780, pp. 325–346.
Fujimoto, I., Bruses, J.L., and Rutishauser, U., J. Biol. Chem., 2001, vol. 276, pp. 31745–31751.
Galuska, C.E., Lutteke, T., and Galuska, S.P., Biology (Basel), 2017, vol. 6.
Rutishauser, U., Nat. Rev. Neurosci., 2008, vol. 9, pp. 26–35.
Molander, M., Berthold, C.H., Persson, H., and Fredman, P. J., Neurosci. Res., 2000, vol. 60, pp. 531–542.
Seyfried, T.N., and Yu, R.K., J. Neurosci. Res., 1990, vol. 26, pp. 105–111.
Legros, N., Pohlentz, G., Steil, D., and Muthing, J., Int. J. Med. Microbiol., 2018, vol. 308, pp. 1073–1084.
Kotani, M., Terashima, T., and Tai, T., Brain. Res., 1995, vol. 700, pp. 40–58.
Yu, R.K., Nakatani, Y., and Yanagisawa, M. J., Lipid. Res., 2009, vol. 50, pp. S440–S445.
Ledeen, R.W. and Yu, R.K., Methods. Enzymol., 1982, vol. 83, pp. 139–191.
Distler, U., Souady, J., Hulsewig, M., Drmic-Hofman, I., Haier, J., Friedrich, A.W., Karch, H., Senninger, N., Dreisewerd, K., Berkenkamp, S., Schmidt, M.A., Peter-Katalinić, J., and Müthing, J., PLoS One, 2009, vol. 4, e6813.
Markotic, A. and Marusic, A., Immunol. Invest., 2004, vol. 33, pp. 335–349.
Markotic, A., Culic, V.C., Kurir, T.T., Meisen, I., Buntemeyer, H., Boraska, V., Zemunik, T., Petri, N., Mesarić, M., Peter-Katalinić, J., and Müthing, J., Biochem. Biophys. Res. Commun., 2005, vol. 330, pp. 131–141.
Magnani, J.L., Smith, D.F., and Ginsburg, V., Anal. Biochem., 1980, vol. 109, pp. 399–402.
Betz, J., Bielaszewska, M., Thies, A., Humpf, H.U., Dreisewerd, K., Karch, H., Kim, K.S., Friedrich, A.W., and Müthing, J., J. Lipid. Res., 2011, vol. 52, pp. 618–634.
Ozgen, H., Baron, W., Hoekstra, D., and Kahya, N., Cell. Mol. Life. Sci., 2016, vol. 73, pp. 3291–3310.
Hayashi, T., and Su, T.P., Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, pp. 14949–14954.
Hering, H., Lin, C.C., and Sheng, M., J. Neurosci., 2003, vol. 23, pp. 3262–3271.
Coetzee, T., Fujita, N., Dupree, J., Shi, R., Blight, A., Suzuki, K., Suzuki, K., and Popko, B., Cell, 1996, vol. 86, pp. 209–219.
Dupree, J.L., Coetzee, T., Blight, A., Suzuki, K., and Popko, B., J. Neurosci., 1998, vol. 18, pp. 1642–1649.
Dyer, C.A. and Benjamins, J.A., J. Cell. Biol., 1990, vol. 111, pp. 625–633.
Yu, R.K., Tsai, Y.T., and Ariga, T., Neurochem. Res., 2012, vol. 37, pp. 1230–1244.
Yu, R.K. and Bieberich, E., Mol. Cell. Endocrinol., 2001, vol. 177, pp. 19–24.
Scheideler, M.A. and Dawson, G., J. Neurochem., 1986, vol. 46, pp. 1639–1643.
Guitart, X., Kogan, J.H., Berhow, M., Terwilliger, R.Z., Aghajanian, G.K., and Nestler, E.J., Brain. Res., 1993, vol. 611, pp. 7–17.
Chen, S. and Hillman, D.E., Brain. Res. Dev. Brain. Res., 1989, vol. 45, pp. 137–147.
Allen, G. and Courchesne, E., Am. J. Psychiatry, 2003, vol. 160, pp. 262–273.
D’Mello, A.M. and Stoodley, C.J., Front. Neurosci., 2015, vol. 9, p. 408.
Ito, M., The Cerebellum and Neural Control, New York: Raven Press, 1984.
ACKNOWLEDGMENTS
We express our warmest thanks to Dalibora Behmen for English language improvement.
Funding
This study was funded by Ministry of Science, Education and Sports Republic of Croatia, grant no. 216-2160133-0066.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest. The authors declare that they have no conflict of interest.
Ethical approval. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted, University of Split School of Medicine.
Rights and permissions
About this article
Cite this article
Jasminka Rešić Karara, Kowalski, M., Markotić, A. et al. Distinct Cerebellar Glycosphingolipid Phenotypes in Wistar and Lewis Rats. Neurochem. J. 14, 20–24 (2020). https://doi.org/10.1134/S1819712420010122
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1819712420010122
Keywords:
- gangliosides
- galactosylceramides
- sulfoglycosphingolipids
- cerebellum
- trisialoganglioside GT1b
- GQ1b ganglioside