Skip to main content
Log in

The Effects of Neuropathic Pain on the State of Glial Cells and Hippocampal Neurogenesis in Old Animals

  • EXPERIMENTAL ARTICLES
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract—We studied the effect of chronic neuropathic pain on the state of microglia and neurogenesis in the hippocampus in old mice. Neuropathic pain was induced by imposing three ligatures on the sciatic nerve of the right hind limb of animals. Testing behavior showed the presence of impaired working memory and locomotor activity in animals with neuropathic pain both in 1 week and 3 weeks after surgery. Behavioral disorders were accompanied by a decrease in hippocampal neurogenesis, as well as an increase in the expression of microglial markers Iba-1 and CD86 in the hippocampus of animals with a ligated sciatic nerve. In addition, the induction of neuropathic pain led to a change in the expression of astroglial markers S100β and GFAP in the hippocampus. The findings suggest that behavioral changes in neuropathic pain are accompanied by changes in the activity of microglia and astroglia, which leads to disruption of neurogenesis and a decrease in cognitive functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Merskey, H. and Bogduk, N., Pain Terms: A Current List with Definitions and Notes on Usage: Classification of Chronic Pain, 2nd ed., Seattle: IASP Task Force on Taxonomy, 1994.

  2. Finnerup, N.B., Sindrup, S.H., and Jensen, T.S., Fundamental & Clinical Pharmacology, 2007, vol. 21, no. 2, pp. 129–136.

    Article  CAS  Google Scholar 

  3. Liu, M.G. and Chen, J., Neuroscience Bulletin, 2009, vol. 25, no. 5, p. 237.

    Article  Google Scholar 

  4. McEwen, B.S., Ann. N. Y. Acad. Sci., 2001, vol. 933, no. 1, pp. 265–277.

    Article  CAS  Google Scholar 

  5. Dimitrov, E.L., Tsuda, M.C., Cameron, H.A., and Usdin, T.B.J., Neurosci., 2014, vol. 34, no. 37, pp. 12304–12312.

    Article  Google Scholar 

  6. Baron, R., Binder, A., and Wasner, G., The Lancet Neurology, 2010, vol. 9, no. 8, pp. 807–819.

    Article  Google Scholar 

  7. Maier, C., Baron, R., Tölle, T.R., Binder, A., Birbaumer, N., Birklein, F., Gierthmühlen, J., Flor, H., Geber, C., Huge, V., and Krumova, E.K., Pain, 2010, vol. 150, no. 3, pp. 439–450.

    Article  CAS  Google Scholar 

  8. Fillingim, R.B., King, C.D., Ribeiro-Dasilva, M.C., Rahim-Williams, B., and Riley, J.L., 3rd., J., Pain, 2009, vol. 10, no. 5, pp. 447–485.

    Article  Google Scholar 

  9. Leite-Almeida, H., Almeida-Torres, L., Mesquita, A.R., Pertovaara, A., Sousa, N., Cerqueira, J.J., and Almeida, A., Pain, 2009, vol. 144, nos. 1–2, pp. 57–65.

    Article  Google Scholar 

  10. Jones, M.R., Ehrhardt, K.P., Ripoll, J.G., Sharma, B., Padnos, I.W., Kaye, R.J., and Kaye, A.D., Curr. Pain Headache Rep., vol. 20, no. 4, p. 23.

  11. Tyrtyshnaia, A.A., Manzhulo, I.V., Sultanov, R.M., and Ermolenko, E.V., Acta Histochem., 2017, vol. 119, no. 8, pp. 812–821.

    Article  CAS  Google Scholar 

  12. Bennett, G.J. and Xie, Y.K., Pain, vol. 198833, no. 1, pp. 87–107.

  13. Allen, J.W. and Yaksh, T.L., Pain Research: Methods and Protocols, 2004, pp. 11–23.

  14. Knowles, J.K., Simmons, D.A., Nguyen, T.V.V., Vander Griend, L., Xie, Y., Zhang, H., Yang, T., Pollak, J., Chang, T., Arancio, O., and Buckwalter, M.S., Neurobiol. Aging, 2013, vol. 34, no. 8, pp. 2052–2063.

    Article  CAS  Google Scholar 

  15. Rusanescu, G. and Mao, J.J., Cell. Mol. Med., 2017, vol. 21, no. 2, pp. 299–314.

    Article  CAS  Google Scholar 

  16. Seifert, F. and Maihofner, C., Curr. Opin. Anesthesiol., 2011, vol. 24, no. 5, pp. 515–523.

    Article  Google Scholar 

  17. Deng, W., Aimone, J.B., and Gage, F.H., Nat. Rev. Neurosci., 2010, vol. 11, no. 5, p. 339.

    Article  CAS  Google Scholar 

  18. Sahay, A. and Hen, R., Nat. Neurosci., 2007, vol. 10, no. 9, p. 1110–1115.

    Article  CAS  Google Scholar 

  19. Revest, J.M., Dupret, D., Koehl, M., Funk-Reiter, C., Grosjean, N., Piazza, P.V., and Abrous, D.N., Mol. Psychiatry, 2009, vol. 14, no. 10, p. 959–967.

    Article  Google Scholar 

  20. Dranovsky, A. and Hen, R., Biol. Psychiatry, 2006, vol. 59, no. 12, pp. 1136–1143.

    Article  CAS  Google Scholar 

  21. Saxe, M.D., Battaglia, F., Wang, J.W., Malleret, G., David, D.J., Monckton, J.E., Garcia, A.D.R., Sofroniew, M.V., Kandel, E.R., Santarelli, L., and Hen, R., Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 46, pp. 17501–17506.

    Article  CAS  Google Scholar 

  22. Van Praag, H., Shubert, T., Zhao, C., and Gage, F.H.J., Neurosci., 2005, vol. 25, no. 38, pp. 8680–8685.

    Article  CAS  Google Scholar 

  23. Egeland, M., Zunszain, P.A., and Pariante, C.M., Nat. Rev. Neurosci., 2015, vol. 16, no. 4, p. 189–200.

    Article  CAS  Google Scholar 

  24. Ekdahl, C.T., Claasen, J.H., Bonde, S., Kokaia, Z., and Lindvall, O., Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, no. 23, pp. 13632–13637.

    Article  CAS  Google Scholar 

  25. Butovsky, O., Kunis, G., Koronyo-Hamaoui, M., and Schwartz, M., Eur. J. Neurosci., 2007, vol. 26, no. 2, pp. 413–416.

    Article  Google Scholar 

  26. Roughton, K., et al., Dev. Neurosci., 2013, vol. 35, no. 5, pp. 406–415.

    Article  CAS  Google Scholar 

  27. Kuzumaki, N., Ikegami, D., Imai, S., Narita, M., Tamura, R., Yajima, M., Suzuki, A., Miyashita, K., Niikura, K., Takeshima, H., and Ando, T., Synapse, 2010, vol. 64, no. 9, pp. 721–728.

    Article  CAS  Google Scholar 

  28. Montgomery, S.L. and Bowers, W.J.J., Neuroimmune Pharmacol., 2012, vol. 7, no. 1, pp. 42–59.

    Article  Google Scholar 

  29. Butovsky, O., Ziv, Y., Schwartz, A., Landa, G., Talpalar, A.E., Pluchino, S., Martino, G., and Schwartz, M., Mol. Cell. Neurosci., 2006, vol. 31, no. 1, pp. 149–160.

    Article  CAS  Google Scholar 

  30. Nikolakopoulou, A.M., Dutta, R., Chen, Z., Miller, R.H., and Trapp, B.D., Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 21, pp. 8714–8719.

    Article  CAS  Google Scholar 

  31. Perea, G., Navarrete, M., and Araque, A., Trends Neurosci., 2009, vol. 32, no. 8, pp. 421–431.

    Article  CAS  Google Scholar 

  32. Figley, C.R. and Stroman, P.W., Eur. J. Neurosci., 2011, vol. 33, no. 4, pp. 577–588.

    Article  Google Scholar 

  33. Gabriel, S., Njunting, M., Pomper, J.K., Merschhemke, M., Sanabria, E.R., Eilers, A., Kivi, A., Zeller, M., Meencke, H.J., Cavalheiro, E.A., Heinemann, U., and Lehmann, T.N., J. Neurosci., 2004, vol. 24, no. 46, pp. 10416–10430.

    Article  CAS  Google Scholar 

  34. Ishibashi, T., Dakin, K.A., Stevens, B., Lee, P.R., Kozlov, S.V., Stewart, C.L., and Fields, R.D., Neuron, 2006, vol. 49, no. 6, pp. 823–832.

    Article  CAS  Google Scholar 

  35. Han, X., Chen, M., Wang, F., Windrem, M., Wang, S., Shanz, S., Xu, Q., Oberheim, N.A., and Bekar, L., Cell Stem Cell, 2013, vol. 12, no. 3, pp. 342–353.

    Article  CAS  Google Scholar 

  36. Zhao, X., Ahram, A., Berman, R.F., Muizelaar, J.P., and Lyeth, B.G., Glia, 2003, vol. 44, no. 2, pp. 140–152.

    Article  Google Scholar 

  37. Ouyang, Y.B., Voloboueva, L.A., Xu, L.J., and Giffard, R.G., J. Neuroscience, 2007, vol. 27, no. 16, pp. 4253–4260.

    Article  CAS  Google Scholar 

  38. Gosselin, R.D., Gibney, S., O’Malley, D., Dinan, T.G., and Cryan, J.F., Neuroscience, 2009, vol. 159, no. 2, pp. 915–925.

    Article  CAS  Google Scholar 

  39. Bridges, N., Slais, K., and Syková, E., Acta Neurobiol. Exp., vol. 68, no. 2, p. 131.

  40. Farina, C., Aloisi, F., and Meinl, E., Trends Immunol., 2007, vol. 28, no. 3, pp. 138–145.

    Article  CAS  Google Scholar 

  41. Raponi, E., Agenes, F., Delphin, C., Assard, N., Baudier, J., Legraverend, C., and Deloulme, J.C., Glia, 2007, vol. 55, no. 2, pp. 165–177.

    Article  Google Scholar 

  42. Sato, K., Glia, 2015, vol. 63, no. 8, pp. 1394–1405.

    Article  Google Scholar 

Download references

Funding

This study was funded by Russian Foundation for Basic research (grant no. 18-34-00120 mol_а).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Tyrtyshnaia.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Ethical approval. All procedures were approved by the Animal Ethics Committee at National Scientific Center of Marine Biology Far Eastern Branch, Russian Academy of Sciences, according to the Laboratory Animal Welfare guidelines.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyrtyshnaia, A.A., Manzhulo, I.V., Konovalova, S.P. et al. The Effects of Neuropathic Pain on the State of Glial Cells and Hippocampal Neurogenesis in Old Animals. Neurochem. J. 13, 355–366 (2019). https://doi.org/10.1134/S1819712419030140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712419030140

Keywords:

Navigation