Advertisement

Neurochemical Journal

, Volume 13, Issue 2, pp 176–181 | Cite as

The Effect of Methotrexate on the Pool of Low-Molecular Weight Sulfur-Containing Compounds in the Brain of Rats

  • Ya. I. NovogrodskayaEmail author
  • M. N. Kurbat
  • E. M. Doroshenko
Experimental Articles
  • 4 Downloads

Abstract

Single administration of methotrexate at a dose of 0.1 mg/kg on the first and seventh days is associated with an imbalance in the pool of low-molecular weight sulfur-containing compounds whose severity decreases in the following series: hypothalamus > midbrain > cerebral hemispheres > striatum > cerebellum. In 24 h, homocysteine remethylation in the cerebral hemispheres decreases, transsulfuration activity in the striatum increases, taurine synthesis in the midbrain decreases, homocysteic acid and taurine synthesis in the hypothalamus increases, and, in the cerebellum, the oxidase pathway of cysteine and homocysteine transformation are activated and taurine transsulfuration and biosynthesis is inhibited. At 7 days after a single meth-otrexate administration, the general trend included the inhibition of the oxidation reactions and activation of transsulfuration and decarboxylation in taurine synthesis.

Keywords

sulfur-containing aminoacids cerebral hemispheres striatum midbrain hypothalamus cerebellum methotrexate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Perevodchikova, N.I., Rukovodstvo po khimioterapii opukholevykh zabolevanii (Manual on Chemotherapy of Tumor Disease), Moscow: Prakticheskaya meditsina, 2018, p. 688.Google Scholar
  2. 2.
    Raevskii, O.A., Biomeditsinskaya Khimiya, 2014, vol. 60, no. 2, pp. 161–181.CrossRefGoogle Scholar
  3. 3.
    Minenko, S.V., Onkogematologiya, 2011, vol. 3, pp. 50–56.Google Scholar
  4. 4.
    Cronstein, B.N., Pharmacol. Rev., 2005, vol. 57, pp. 163–172.CrossRefGoogle Scholar
  5. 5.
    Mikkelsen Torben, S., Pharmacogenet. Genomics, 2011, vol. 21, no. 10, pp. 679–686.CrossRefGoogle Scholar
  6. 6.
    Lima, A., Int. J. Mol. Sci., 2015, vol. 16, pp. 13760–13780.CrossRefGoogle Scholar
  7. 7.
    Korman, D.B., Osnovy protivoopukholevoi khimioterapii (Basics of Anti-Tumor Chemotherapy), Moscow: Prakticheskaya meditsina, 2006, p. 503.Google Scholar
  8. 8.
    Hagner, N. and Cancer, M., Cancer Manag. Res., 2010, vol. 2, pp. 293–301.Google Scholar
  9. 9.
    Bacherikov, V.A., Visnik ONU. Khimiya, 2013, vol. 18, no. 3, pp. 38–52.Google Scholar
  10. 10.
    Polly, J.W., Drug. Metab. Disposit., 2009, vol. 37, pp. 439–442.CrossRefGoogle Scholar
  11. 11.
    Sane, R., Drug. Metab. Dispos., 2014, vol. 42, no. 4, pp. 537–540.CrossRefGoogle Scholar
  12. 12.
    Angelov, L., J. Clin. Oncol., 2009, vol. 27, no. 21, pp. 3503–3509.CrossRefGoogle Scholar
  13. 13.
    Alavijeh, M.S., NeuroRx, 2005, vol. 2, pp. 554–571.CrossRefGoogle Scholar
  14. 14.
    Kurbat, M.N. and Lelevich, V.V., Neirokhimiya, 2009, vol. 26, no. 1, pp. 29–34.Google Scholar
  15. 15.
    Shirokov, E.A. and Leonova, S.F., Klin. Med. (Moscow), 2006, vol. 84, issue 12, pp. 39–42.Google Scholar
  16. 16.
    Pron'ko, P.S., Khomich, T.I., Satanovskaya, V.I., Lis, R.E., and Naumov, A.V., Fundamental'nye nauki - meditsine. materialy Mezhdunar. nauch. konf. 17 maya 2013 (Fundamental Sciences for Medicine: Proceedings of International Scientific Conference. May 17, 2013), Minsk: Belarus. navuka, 2013, part 2, pp. 166–170.Google Scholar
  17. 17.
    Doroshenko, E. M., Snezhitskii, V.A., and Lelevich, V.V., Zhurnal Grodnenskogo Gosudarstvennogo Meditsinskogo Universiteta, 2017, vol. 15, no. 5, p. 552.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Ya. I. Novogrodskaya
    • 1
    Email author
  • M. N. Kurbat
    • 1
  • E. M. Doroshenko
    • 1
  1. 1.Grodno State Medical UniversityGrodnoBelarus

Personalised recommendations