Advertisement

Neurochemical Journal

, Volume 12, Issue 1, pp 1–8 | Cite as

Cardiotonic Steroids as Potential Endogenous Regulators in the Nervous System

  • A. V. Lopachev
  • D. A. Abaimov
  • T. N. Fedorova
  • O. M. Lopacheva
  • N. V. Akkuratova
  • E. E. Akkuratov
Reviews
  • 21 Downloads

Abstract

The group of compounds of the cardiotonic steroid (CTS) class includes steroid compounds that inhibit Na+,K+-ATPase. Recently, a large amount of data has been accumulating on the important role of CTS in regulating brain function through binding to Na+,K+-ATPase, which can perform a receptor role and trigger intracellular signaling cascades. Interestingly, it is in the brain where the greatest diversity of Na+,K+-ATPase isoforms different in their affinity for compounds of this class is observed. Despite the abundance of data on the presence of endogenous CTS in mammalian organisms and the evolutionary prerequisites for their existence, the presence of specific compounds is being actively discussed in the scientific literature, and enzymes directly involved in the synthesis of these compounds have not been identified. This review describes currently established functions of cardiotonic steroids and gives a detailed description of currently existing prerequisites of the endogenous origin of CTS in mammals. Experimental evidence of the presence of specific CTS in the body is given and attention is paid to the methods based on which the structure of endogenous CTS is established or predicted. We discuss why CTS can be important endogenous regulators in the nervous system and why the problem of isolating endogenous CTS from the brain and establishing their structure is urgent.

Keywords

Na+,K+-ATPase ouabain digoxin bufalin marinobufagenin cardiotonic steroids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kaplan, J.H., Annu. Rev. Biochem., 2002, vol. 71, pp. 511–535.PubMedCrossRefGoogle Scholar
  2. 2.
    Skou, J.C., Biochim. Biophys. Acta, 1957, vol. 23, no. 2, pp. 394–401.PubMedCrossRefGoogle Scholar
  3. 3.
    Skou, J.C., Biosci. Rep., 1998, vol. 18, no. 4, pp. 155–169.PubMedCrossRefGoogle Scholar
  4. 4.
    Skou, J.C., Biochim. Biophys. Acta, 1962, vol. 58, pp. 314–325.PubMedCrossRefGoogle Scholar
  5. 5.
    Charnock, J.S. and Post, R.L., Nature, 1963, vol. 199, pp. 910–911.PubMedCrossRefGoogle Scholar
  6. 6.
    Gemmell, W., Br. Med. J., 1890, vol. 1, no. 1530, pp. 950–951.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Gibson, K. and Harris, P., Cardiovasc. Res., 1970, vol. 4, no. 1, pp. 6–13.PubMedCrossRefGoogle Scholar
  8. 8.
    Arnaud-Batista, F.J., Costa, G.T., Oliveira, I.M., Costa, P.P., Santos, C.F., Fonteles, M.C., Uchoa, D.E., Silveira, E.R., Cardi, B.A., Carvalho, K.M., Amaral, L.S., Pocas, E.S., Quintas, L.E., Noel, F., and Nascimento, N.R., Am. J. Physiol. Renal Physiol., 2012, vol. 302, no. 8, pp. F959–F966.PubMedCrossRefGoogle Scholar
  9. 9.
    Katz, A., Lifshitz, Y., Bab-Dinitz, E., Kapri-Pardes, E., Goldshleger, R., Tal, D.M., and Karlish, S.J., J. Biol. Chem., 2010, vol. 285, no. 25, pp. 19582–19592.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Chen, K.K. and Kovarikova, A., J. Pharm. Sci., 1967, vol. 56, no. 12, pp. 1535–1541.PubMedCrossRefGoogle Scholar
  11. 11.
    Laursen, M., Gregersen, J.L., Yatime, L., Nissen, P., and Fedosova, N.U., Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, no. 6, pp. 1755–1760.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Schonfeld, W., Weiland, J., Lindig, C., Masnyk, M., Kabat, M.M., Kurek, A., Wicha, J., and Repke, K.R., Naunyn Schmiedebergs Arch. Pharmacol., 1985, vol. 329, no. 4, pp. 414–426.PubMedCrossRefGoogle Scholar
  13. 13.
    Ogawa, H., Shinoda, T., Cornelius, F., and Toyoshima, C., Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 33, pp. 13742–13747.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Laursen, M., Yatime, L., Nissen, P., and Fedosova, N.U., Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 27, pp. 10958–10963.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Fedorova, O.V., Shapiro, J.I., and Bagrov, A.Y., Biochim. Biophys. Acta, 2010, vol. 1802, no. 12, pp. 1230–1236.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Tverskoi, A.M., Sidorenko, S.V., Klimanova, E.A., Akimova, O.A., Smolyaninova, L.V., Lopina, O.D., and Orlov, S.N., Biochemistry (Moscow), 2016, vol. 81, no. 8, pp. 876–883.CrossRefGoogle Scholar
  17. 17.
    Murata, Y., Matsuda, T., Tamada, K., Hosoi, R., Asano, S., Takuma, K., Tanaka, K., and Baba, A., Jpn. J. Pharmacol., 1996, vol. 72, no. 4, pp. 347–353.PubMedCrossRefGoogle Scholar
  18. 18.
    Peng, M., Huang, L., Xie, Z., Huang, W.H., and Askari, A., J. Biol. Chem., 1996, vol. 271, no. 17, pp. 10372–10378.PubMedCrossRefGoogle Scholar
  19. 19.
    Kometiani, P., Li, J., Gnudi, L., Kahn, B.B., Askari, A., and Xie, Z., J. Biol. Chem., 1998, vol. 273, no. 24, pp. 15249–15256.PubMedCrossRefGoogle Scholar
  20. 20.
    Sibarov, D.A., Bolshakov, A.E., Abushik, P.A., Krivoi, I.I., and Antonov, S.M., J. Pharmacol. Exp. Ther., 2012, vol. 343, no. 3, pp. 596–607.PubMedCrossRefGoogle Scholar
  21. 21.
    Burlaka, I., Liu, X.L., Rebetz, J., Arvidsson, I., Yang, L., Brismar, H., Karpman, D., and Aperia, A., J. Am. Soc. Nephrol., 2013, vol. 24, no. 9, pp. 1413–1423.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Akimova, O.A., Lopina, O.D., Rubtsov, A.M., Gekle, M., Tremblay, J., Hamet, P., and Orlov, S.N., Apoptosis, 2009, vol. 14, no. 11, pp. 1266–1273.PubMedCrossRefGoogle Scholar
  23. 23.
    Kulikov, A., Eva, A., Kirch, U., Boldyrev, A., and Scheiner-Bobis, G., Biochim. Biophys. Acta, 2007, vol. 1768, no. 7, pp. 1691–1702.PubMedCrossRefGoogle Scholar
  24. 24.
    Xie, Z. and Askari, A., Eur. J. Biochem., 2002, vol. 269, no. 10, pp. 2434–2439.PubMedCrossRefGoogle Scholar
  25. 25.
    Reinhard, L., Tidow, H., Clausen, M.J., and Nissen, P., Cell. Mol. Life Sci., 2013, vol. 70, no. 2, pp. 205–222.PubMedCrossRefGoogle Scholar
  26. 26.
    Fontana, J.M., Burlaka, I., Khodus, G., Brismar, H., and Aperia, A., FEBS J., 2013, vol. 280, no. 21, pp. 5450–5455.PubMedCrossRefGoogle Scholar
  27. 27.
    Lopachev, A.V., Lopacheva, O.M., Osipova, E.A., Vladychenskaya, E.A., Smolyaninova, L.V., Fedorova, T.N., Koroleva, O.V., and Akkuratov, E.E., Cell Biochem. Funct., 2016, vol. 34, no. 5, pp. 367–377.PubMedCrossRefGoogle Scholar
  28. 28.
    el-Mallakh, R.S., Hedges, S., and Casey, D., J. Clin. Psychopharmacol., 1995, vol. 15, no. 1, pp. 82–83.PubMedCrossRefGoogle Scholar
  29. 29.
    el-Mallakh, R.S., Harrison, L.T., Li, R., Changaris, D.G., and Levy, R.S., Prog. Neuropsychopharmacol. Biol. Psychiatry, 1995, vol. 19, no. 5, pp. 955–962.PubMedCrossRefGoogle Scholar
  30. 30.
    Yu, H.S., Kim, S.H., Park, H.G., Kim, Y.S., and Ahn, Y.M., Prog. Neuropsychopharmacol. Biol. Psychiatry, 2010, vol. 34, no. 6, pp. 888–894.PubMedCrossRefGoogle Scholar
  31. 31.
    Yu, H.S., Kim, S.H., Park, H.G., Kim, Y.S., and Ahn, Y.M., Neurochem. Int., 2011, vol. 59, no. 6, pp. 779–786.PubMedCrossRefGoogle Scholar
  32. 32.
    Moseley, A.E., Williams, M.T., Schaefer, T.L., Bohanan, C.S., Neumann, J.C., Behbehani, M.M., Vorhees, C.V., and Lingrel, J.B., J. Neurosci., 2007, vol. 27, no. 3, pp. 616–626.Google Scholar
  33. 33.
    Schoner, W., Eur. J. Biochem., 2002, vol. 269, no. 10, pp. 2440–2448.PubMedCrossRefGoogle Scholar
  34. 34.
    Urayama, O., Shutt, H., and Sweadner, K.J., J. Biol. Chem., 1989, vol. 264, no. 14, pp. 8271–8280.PubMedGoogle Scholar
  35. 35.
    Maeda, M., Hamano, K., Hirano, Y., Suzuki, M., Takahashi, E., Terada, T., Futai, M., and Sato, R., Cell Struct. Funct., 1998, vol. 23, no. 6, pp. 315–323.PubMedCrossRefGoogle Scholar
  36. 36.
    Mishra, N.K., Peleg, Y., Cirri, E., Belogus, T., Lifshitz, Y., Voelker, D.R., Apell, H.J., Garty, H., and Karlish, S.J., J. Biol. Chem., 2011, vol. 286, no. 11, pp. 9699–9712.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Blanco, G. and Mercer, R.W., Am. J. Physiol., 1998, vol. 275, no. 5, part 2, pp. F633–F650.PubMedGoogle Scholar
  38. 38.
    Azarias, G., Kruusmagi, M., Connor, S., Akkuratov, E.E., Liu, X.L., Lyons, D., Brismar, H., Broberger, C., and Aperia, A., J. Biol. Chem., 2013, vol. 288, no. 4, pp. 2734–2743.PubMedCrossRefGoogle Scholar
  39. 39.
    Illarionova, N.B., Brismar, H., Aperia, A., and Gunnarson, E., PLoS One, 2014, vol. 9, no. 6, e98469.PubMedCrossRefGoogle Scholar
  40. 40.
    de Fusco, M., Marconi, R., Silvestri, L., Atorino, L., Rampoldi, L., Morgante, L., Ballabio, A., Aridon, P., and Casari, G., Nat. Genet., 2003, vol. 33, no. 2, pp. 192–196.PubMedCrossRefGoogle Scholar
  41. 41.
    de Carvalho Aguiar, P., Sweadner, K.J., Penniston, J.T., Zaremba, J., Liu, L., Caton, M., Linazasoro, G., Borg, M., Tijssen, M.A., Bressman, S.B., Dobyns, W.B., Brashear, A., and Ozelius, L.J., Neuron, 2004, vol. 43, no. 2, pp. 169–175.PubMedCrossRefGoogle Scholar
  42. 42.
    Heinzen, E.L., Swoboda, K.J., Hitomi, Y., Gurrieri, F., Nicole, S., de Vries, B., Tiziano, F.D., Fontaine, B., Walley, N.M., Heavin, S., and Panagiotakaki, E., European Alternating Hemiplegia of Childhood (AHC) Genetics Consortium, Biobanca e Registro Clinico per l’Emiplegia Alternante (I.B.AHC) Consortium, European Network for Research on Alternating Hemiplegia (ENRAH) for Small and Medium-sized Enterpriese (SMEs) Consortium, Fiori, S., Abiusi, E., di Pietro, L., Sweney, M.T., Newcomb, T.M., Viollet, L., Huff, C., Jorde, L.B., Reyna, S.P., Murphy, K.J., Shianna, K.V., Gumbs, C.E., Little, L., Silver, K., Ptacek, L.J., Haan, J., Ferrari, M.D., Bye, A.M., Herkes, G.K., Whitelaw, C.M., Webb, D., Lynch, B.J., Uldall, P., King, M.D., Scheffer, I.E., Neri, G., Arzimanoglou, A., van den Maagdenberg, A.M., Sisodiya, S.M., Mikati, M.A., and Goldstein, D.B., Nat. Genet., 2012, vol. 44, no. 9, pp. 1030–1034.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Shrivastava, A.N., Redeker, V., Fritz, N., Pieri, L., Almeida, L.G., Spolidoro, M., Liebmann, T., Bousset, L., Renner, M., Lena, C., Aperia, A., Melki, R., and Triller, A., EMBO J., 2015, vol. 34, no. 19, pp. 2408–2423.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Ohnishi, T., Yanazawa, M., Sasahara, T., Kitamura, Y., Hiroaki, H., Fukazawa, Y., Kii, I., Nishiyama, T., Kakita, A., Takeda, H., Takeuchi, A., Arai, Y., Ito, A., Komura, H., Hirao, H., Satomura, K., Inoue, M., Muramatsu, S., Matsui, K., Tada, M., Sato, M., Saijo, E., Shigemitsu, Y., Sakai, S., Umetsu, Y., Goda, N., Takino, N., Takahashi, H., Hagiwara, M., Sawasaki, T., Iwasaki, G., Nakamura, Y., Nabeshima, Y., Teplow, D.B., and Hoshi, M., Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, no. 32, pp. E4465–E4474.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Ruegsegger, C., Maharjan, N., Goswami, A., Filezac de L’Etang, A., Weis, J., Troost, D., Heller, M., Gut, H., and Saxena, S., Acta Neuropathol., 2016, vol. 131, no. 3, pp. 427–451.PubMedCrossRefGoogle Scholar
  46. 46.
    Renner, M. and Melki, R., Pathol. Biol., 2014, vol. 62, no. 3, pp. 162–168.PubMedCrossRefGoogle Scholar
  47. 47.
    Akkuratov, E.E., Lopacheva, O.M., Kruusmagi, M., Lopachev, A.V., Shah, Z.A., Boldyrev, A.A., and Liu, L., Mol. Neurobiol., 2015, vol. 52, no. 3, pp. 1726–1734.PubMedCrossRefGoogle Scholar
  48. 48.
    Zhang, D., Hou, Q., Wang, M., Lin, A., Jarzylo, L., Navis, A., Raissi, A., Liu, F., and Man, H.Y., J. Neurosci., 2009, vol. 29, no. 14, pp. 4498–4511.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Blom, H., Ronnlund, D., Scott, L., Spicarova, Z., Rantanen, V., Widengren, J., Aperia, A., and Brismar, H., Microsc. Res. Tech., 2012, vol. 75, no. 2, pp. 220–228.PubMedCrossRefGoogle Scholar
  50. 50.
    de Juan-Sanz, J., Nunez, E., Villarejo-Lopez, L., Perez-Hernandez, D., Rodriguez-Fraticelli, A.E., Lopez-Corcuera, B., Vazquez, J., and Aragon, C., J. Neurosci., 2013, vol. 33, no. 35, pp. 14269–14281.PubMedCrossRefGoogle Scholar
  51. 51.
    Rose, E.M., Koo, J.C., Antflick, J.E., Ahmed, S.M., Angers, S., and Hampson, D.R., J. Neurosci., 2009, vol. 29, no. 25, pp. 8143–8155.PubMedCrossRefGoogle Scholar
  52. 52.
    Illarionova, N.B., Gunnarson, E., Li, Y., Brismar, H., Bondar, A., Zelenin, S., and Aperia, A., Neuroscience, 2010, vol. 168, no. 4, pp. 915–925.PubMedCrossRefGoogle Scholar
  53. 53.
    Karpova, L., Eva, A., Kirch, U., Boldyrev, A., and Scheiner-Bobis, G., FEBS J., 2010, vol. 277, no. 8, pp. 1853–1860.PubMedCrossRefGoogle Scholar
  54. 54.
    Madan, N., Xu, Y., Duan, Q., Banerjee, M., Larre, I., Pierre, S.V., and Xie, Z., Am. J. Physiol. Cell Physiol., 2016, vol. 312, no. 3, pp. C222–C232.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Valvassori, S.S., Arent, C.O., Steckert, A.V., Varela, R.B., Jornada, L.K., Tonin, P.T., Budni, J., Mariot, E., Kapczinski, F., and Quevedo, J., Mol. Neurobiol., 2015, vol. 52, no. 1, pp. 353–362.PubMedCrossRefGoogle Scholar
  56. 56.
    Wang, Y.C., Wang, E.N., Wang, C.C., Huang, C.L., and Huang, A.C., Pharmacol. Biochem. Behav., 2013, vol. 105, pp. 118–127.PubMedCrossRefGoogle Scholar
  57. 57.
    Valvassori, S.S., Resende, W.R., Lopes-Borges, J., Mariot, E., Dal-Pont, G.C., Vitto, M.F., Luz, G., de Souza, C.T., and Quevedo, J., J. Psychiatr. Res., 2015, vol. 65, pp. 63–70.PubMedCrossRefGoogle Scholar
  58. 58.
    Valvassori, S.S., Dal-Pont, G.C., Resende, W.R., Jornada, L.K., Peterle, B.R., Machado, A.G., Farias, H.R., de Souza, C.T., Carvalho, A.F., and Quevedo, J., Neuropharmacology, 2017, vol. 117, pp. 447–459.PubMedCrossRefGoogle Scholar
  59. 59.
    Wu, J., Akkuratov, E.E., Bai, Y., Gaskill, C.M., Askari, A., and Liu, L., Biochemistry, 2013, vol. 52, no. 50, pp. 9059–9067.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Beaulieu, J.M., Del’guidice, T., Sotnikova, T.D., Lemasson, M., and Gainetdinov, R.R., Front. Mol. Neurosci., 2011, vol. 4, p.38.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Zhang, L.N., Li, J.X., Hao, L., Sun, Y.J., Xie, Y.H., Wu, S.M., Liu, L., Chen, X.L., and Gao, Z.B., Mol. Med. Rep., 2013, vol. 8, no. 5, pp. 1291–1299.PubMedCrossRefGoogle Scholar
  62. 62.
    Bersier, M.G., Pena, C., and Rodriguez de Lores Arnaiz, G., Neurochem. Res., 2008, vol. 33, no. 1, pp. 66–72.PubMedCrossRefGoogle Scholar
  63. 63.
    Antonov, S.M., Krivoi, I.I., Drabkina, T.M., Mironova, E.V., and Evstratova, A.A., Dokl. Biol. Sci., 2009, vol. 426, pp. 207–209.PubMedCrossRefGoogle Scholar
  64. 64.
    Corti, C., Xuereb, J.H., Crepaldi, L., Corsi, M., Michielin, F., and Ferraguti, F., Schizophr. Res., 2011, vol. 128, no. 1–3, pp. 7–14.PubMedCrossRefGoogle Scholar
  65. 65.
    Lingrel, J.B., Annu. Rev. Physiol., 2010, vol. 72, pp. 395–412.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Mohammadi, S., Gompert, Z., Gonzalez, J., Takeuchi, H., Mori, A., and Savitzky, A.H., Proc. Biol. Sci., 2016, vol. 283, no. 1842, p. 20162111.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Dobler, S., Dalla, S., Wagschal, V., and Agrawal, A.A., Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 32, pp. 13040–13045.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Ujvari, B., Casewell, N.R., Sunagar, K., Arbuckle, K., Wuster, W., Lo, N., O’Meally, D., Beckmann, C., King, G.F., Deplazes, E., and Madsen, T., Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, no. 38, pp. 11911–11916.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Hodes, A., Rosen, H., Deutsch, J., Lifschytz, T., Einat, H., and Lichtstein, D., Bipolar. Disord., 2016, vol. 18, no. 5, pp. 451–459.PubMedCrossRefGoogle Scholar
  70. 70.
    Fishman, M.C., Proc. Natl. Acad. Sci. U.S.A., 1979, vol. 76, no. 9, pp. 4661–4663.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Lichtstein, D. and Samuelov, S., Biochem. Biophys. Res. Commun., 1980, vol. 96, no. 4, pp. 1518–1523.PubMedCrossRefGoogle Scholar
  72. 72.
    Lichtstein, D. and Samuelov, S., Isr. J. Med. Sci., 1982, vol. 18, no. 1, pp. 45–50.PubMedGoogle Scholar
  73. 73.
    Devynck, M.A., Pernollet, M.G., De The, H., Rosenfeld, J.B., and Meyer, P., Proc. Eur. Dial. Transplant. Assoc., 1983, vol. 20, pp. 489–495.PubMedGoogle Scholar
  74. 74.
    Shimoni, Y., Gotsman, M., Deutsch, J., Kachalsky, S., and Lichtstein, D., Nature, 1984, vol. 307, no. 5949, pp. 369–371.PubMedCrossRefGoogle Scholar
  75. 75.
    Tamura, M., Lam, T.T., and Inagami, T., Biochem. Biophys. Res. Commun., 1987, vol. 149, no. 2, pp. 468–474.PubMedCrossRefGoogle Scholar
  76. 76.
    Hamlyn, J.M., Harris, D.W., Clark, M.A., Rogowski, A.C., White, R.J., and Ludens, J.H., Hypertension, 1989, vol. 13, no. 6, part 2, pp. 681–689.PubMedCrossRefGoogle Scholar
  77. 77.
    Baecher, S., Kroiss, M., Fassnacht, M., and Vogeser, M., Clin. Chim. Acta, 2014, vol. 431, pp. 87–92.PubMedCrossRefGoogle Scholar
  78. 78.
    Lewis, L.K., Yandle, T.G., Hilton, P.J., Jensen, B.P., Begg, E.J., and Nicholls, M.G., Hypertension, 2014, vol. 64, no. 4, pp. 680–683.PubMedCrossRefGoogle Scholar
  79. 79.
    Nicholls, M.G., Lewis, L.K., Yandle, T.G., Lord, G., McKinnon, W., and Hilton, P.J., J. Hypertens., 2009, vol. 27, no. 1, pp. 3–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Buckalew, V.M., Front. Endocrinol. (Lausanne), 2015, vol. 6, p.49.Google Scholar
  81. 81.
    Blaustein, M.P., Am. J. Physiol. Heart Circ. Physiol., 2014, vol. 307, no. 5, pp. H635–H639.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Hamlyn, J.M., Front. Endocrinol. (Lausanne), 2014, vol. 5, pp.199.Google Scholar
  83. 83.
    Bagrov, A.Y., Shapiro, J.I., and Fedorova, O.V., Pharmacol. Rev., 2009, vol. 61, no. 1, pp. 9–38.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Schoner, W. and Scheiner-Bobis, G., Nephrol. Dial. Transplant., 2008, vol. 23, no. 9, pp. 2723–2729.PubMedCrossRefGoogle Scholar
  85. 85.
    Harris, D.W., Clark, M.A., Fisher, J.F., Hamlyn, J.M., Kolbasa, K.P., Ludens, J.H., and DuCharme, D.W., Hypertension, 1991, vol. 17, no. 6, part 2, pp. 936–943.PubMedCrossRefGoogle Scholar
  86. 86.
    Mathews, W.R., DuCharme, D.W., Hamlyn, J.M., Harris, D.W., Mandel, F., Clark, M.A., and Ludens, J.H., Hypertension, 1991, vol. 17, no. 6, part 2, pp. 930–935.PubMedCrossRefGoogle Scholar
  87. 87.
    Gottlieb, S.S., Rogowski, A.C., Weinberg, M., Krichten, C.M., Hamilton, B.P., and Hamlyn, J.M., Circulation, 1992, vol. 86, no. 2, pp. 420–425.PubMedCrossRefGoogle Scholar
  88. 88.
    Rossi, G., Manunta, P., Hamlyn, J.M., Pavan, E., de Toni, R., Semplicini, A., and Pessina, A.C., J. Hypertens., 1995, vol. 13, no. 10, pp. 1181–1191.PubMedCrossRefGoogle Scholar
  89. 89.
    Dvela, M., Rosen, H., Ben-Ami, H.C., and Lichtstein, D., Am. J. Physiol. Cell Physiol., 2012, vol. 302, no. 2, pp. C442–C452.PubMedCrossRefGoogle Scholar
  90. 90.
    Okazaki, M., Tanigawara, Y., Kita, T., Komada, F., and Okumura, K., Ther. Drug. Monit., 1997, vol. 19, no. 6, pp. 657–662.PubMedCrossRefGoogle Scholar
  91. 91.
    Hamlyn, J.M., Blaustein, M.P., Bova, S., DuCharme, D.W., Harris, D.W., Mandel, F., Mathews, W.R., and Ludens, J.H., Proc. Natl. Acad. Sci. U.S.A., 1991, vol. 88, no. 14, pp. 6259–6263.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Hamlyn, J.M., Ringel, R., Schaeffer, J., Levinson, P.D., Hamilton, B.P., Kowarski, A.A., and Blaustein, M.P., Nature, 1982, vol. 300, no. 5893, pp. 650–652.PubMedCrossRefGoogle Scholar
  93. 93.
    Ludens, J.H., Clark, M.A., DuCharme, D.W., Harris, D.W., Lutzke, B.S., Mandel, F., Mathews, W.R., Sutter, D.M., and Hamlyn, J.M., Hypertension, 1991, vol. 17, no. 6, part 2, pp. 923–929.PubMedCrossRefGoogle Scholar
  94. 94.
    Komiyama, Y., Nishimura, N., Dong, X.H., Hirose, S., Kosaka, C., Masaki, H., Masuda, M., and Takahashi, H., Hypertens. Res., 2000, vol. 23 (Suppl.), pp. S21–S27.PubMedCrossRefGoogle Scholar
  95. 95.
    Komiyama, Y., Nishimura, N., Munakata, M., Mori, T., Okuda, K., Nishino, N., Hirose, S., Kosaka, C., Masuda, M., and Takahashi, H., J. Hypertens., 2001, vol. 19, no. 2, pp. 229–236.PubMedCrossRefGoogle Scholar
  96. 96.
    Tymiak, A.A., Norman, J.A., Bolgar, M., DiDonato, G.C., Lee, H., Parker, W.L., Lo, L.C., Berova,N., Nakanishi, K., Haber, E., and Haupert, G.T., Proc. Natl. Acad. Sci. U.S.A., 1993, vol. 90, no. 17, pp. 8189–8193.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Sancho, J.M., Clin. Exp. Hypertens., 1998, vol. 20, no. 5–6, pp. 535–542.PubMedCrossRefGoogle Scholar
  98. 98.
    Schneider, R., Wray, V., Nimtz, M., Lehmann, W.D., Kirch, U., Antolovic, R., and Schoner, W., J. Biol. Chem., 1998, vol. 273, no. 2, pp. 784–792.PubMedCrossRefGoogle Scholar
  99. 99.
    Lenaerts, C., Bond, L., Tuytten, R., Delporte, C., van Antwerpen, P., and Blankert, B., J. Matern. Fetal. Neonatal. Med., 2016, vol. 29, no. sup. 2, p. 18.CrossRefGoogle Scholar
  100. 100.
    Bagrov, A.Y., Fedorova, O.V., Dmitrieva, R.I., Howald, W.N., Hunter, A.P., Kuznetsova, E.A., and Shpen, V.M., Hypertension, 1998, vol. 31, no. 5, pp. 1097–1103.PubMedCrossRefGoogle Scholar
  101. 101.
    Komiyama, Y., Dong, X.H., Nishimura, N., Masaki, H., Yoshika, M., Masuda, M., and Takahashi, H., Clin. Biochem., 2005, vol. 38, no. 1, pp. 36–45.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Lopachev
    • 1
  • D. A. Abaimov
    • 1
  • T. N. Fedorova
    • 1
  • O. M. Lopacheva
    • 1
    • 2
  • N. V. Akkuratova
    • 3
    • 4
  • E. E. Akkuratov
    • 4
    • 5
  1. 1.Research Center of NeurologyMoscowRussia
  2. 2.International Biotechnological CenterMoscow State UniversityMoscowRussia
  3. 3.Skolkovo Institute of Science and TechnologyMoscowRussia
  4. 4.Institute of Translational BiomedicineSaint Petersburg State UniversitySt. PetersburgRussia
  5. 5.St. PetersburgRussia

Personalised recommendations