Advertisement

Neurochemical Journal

, Volume 11, Issue 3, pp 236–241 | Cite as

Accumulation of corticosterone and interleukin-1β in the hippocampus after focal ischemic damage of the neocortex: Selective vulnerability of the ventral hippocampus

  • M. V. OnufrievEmail author
  • S. V. Freiman
  • Yu. V. Moiseeva
  • M. Yu. Stepanichev
  • N. A. Lazareva
  • N. V. Gulyaeva
Experimental Articles

Abstract

Most ischemic strokes are caused by the occlusion of the middle cerebral artery (MCAO), which results in focal brain lesions in different areas of the neocortex. Secondary damage develops in brain regions located out of the infarct area, including the hippocampus. Hippocampal lesion may lead to cognitive impairments and post-stroke depression. Here, we studied the time course of changes in the levels of corticosterone and proinflammatory cytokine interleukine-1β (IL-1β) in the blood and hippocampus of rats after transient focal brain ischemia. Activation of the hypothalamo–pituitary–adrenal axis, which causes a release of corticosterone into blood, was observed at the early stage after MCAO and was accompanied by the presence of the stress hormone in the hippocampi of both the ischemic and contralateral hemispheres. We show for the first time that this effect was observed only in the ventral hippocampus (VH) but not in the dorsal hippocampus (DH). MCAO induced accumulation of the proinflammatory cytokine IL-1β, which coexisted with the elevated level of corticosterone at the early and delayed stages after reperfusion and was also observed in the VH of both hemispheres. Our data show that the VH is more vulnerable to remote damage induced by MCAO compared to the DH and corticosteroid response and neuroinflammation may be detected in the VH of both ischemic and contralateral hemispheres.

Keywords

ischemic stroke dorsal hippocampus ventral hippocampus corticosterone proinflammatory cytokines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dirnagl, U., Iadecola, C., and Moskowitz, M.A., Trends Neurosci., 1999, vol. 22, pp. 391–397.CrossRefPubMedGoogle Scholar
  2. 2.
    Butler, T.L., Kassed, C.A., Sanberg, P.R., Willing, A.E., and Pennypacker, K.R., Brain Res., 2002, vol. 929, pp. 252–260.CrossRefPubMedGoogle Scholar
  3. 3.
    Block, F., Dihné, M., and Loos, M., Prog. Neurobiol., 2005, vol. 75, pp. 342–365.CrossRefPubMedGoogle Scholar
  4. 4.
    Lambertsen, K., Biber, K., and Finsen, B., J. Cereb. Blood Flow Metab., 2012, vol. 32, pp. 1677–1698.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dunn, A.J., Ann. NY Acad. Sci., 2000, vol. 917, pp. 608–617.CrossRefPubMedGoogle Scholar
  6. 6.
    John, C.D. and Buckingham, J.C., Curr. Opin. Pharmacol., 2003, vol. 3, pp. 78–84.CrossRefPubMedGoogle Scholar
  7. 7.
    Fassbender, K., Schmidt, R., Mössner, R., Daffertshofer, M., and Hennerici, M., Stroke, 1994, vol. 25, pp. 1105–1108.CrossRefPubMedGoogle Scholar
  8. 8.
    Johansson, A., Olsson, T., Carlberg, B., Karlsson, K., and Fagerlund, M., J. Neurol. Sci., 1997, vol. 147, pp. 43–47.CrossRefPubMedGoogle Scholar
  9. 9.
    Sapolsky, R.M., Arch. Gen. Psychiatry, 2000, vol. 57, pp. 925–935.CrossRefPubMedGoogle Scholar
  10. 10.
    Jacobson, L. and Sapolsky, R., Endocr. Rev., 1991, vol. 12, pp. 118–134.CrossRefPubMedGoogle Scholar
  11. 11.
    Sarabdjitsingh, R.A., Meijer, O.C., Schaaf, M.J., and de Kloet, E.R., Brain Res., 2009, vol. 1249, pp. 43–53.CrossRefPubMedGoogle Scholar
  12. 12.
    Segal, M., Richter-Levin, G., and Maggio, N., Hippocampus, 2010, vol. 20, pp. 1332–1338.CrossRefPubMedGoogle Scholar
  13. 13.
    Gulyaeva, N.V., Ross. Fiziol. Zhurn. im. I.M. Sechenova, 2013, vol. 99, pp. 3–16.Google Scholar
  14. 14.
    Longa, E., Weinstein, P., Carlson, S., and Cummins, R., Stroke, 1989, vol. 20, pp. 84–91.CrossRefPubMedGoogle Scholar
  15. 15.
    Lin, T.N., He, Y.Y., Wu, G., Khan, M., and Hsu, C.Y., Stroke, 1993, vol. 24, pp. 117–121.CrossRefPubMedGoogle Scholar
  16. 16.
    Quast, M.J., Huang, N.C., Hillman, G.R., and Kent, T.A., Magn. Reson. Imaging, 1993, vol. 11, pp. 465–471.CrossRefPubMedGoogle Scholar
  17. 17.
    Popp, A., Jaenisch, N., Witte, O.W., and Frahm, C., PLoS One, 2009, vol. 4: e4764.Google Scholar
  18. 18.
    Smith-Swintosky, V.L., Pettigrew, L.C., Sapolsky, R.M., Phares, C., Craddock, S.D., Brooke, S.M., and Mattson, M.P., J. Cereb. Blood Flow Metab., 1996, vol. 16, pp. 585–598.CrossRefPubMedGoogle Scholar
  19. 19.
    Dorey, R., Pierard, C., Chauveau, F., David, V., and Beracochea, D., Neuropsychopharmacology, 2012, vol. 37, pp. 2870–2880.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Higo, S., Hojo, Y., Ishii, H., Komatsuzaki, Y., Ooishi, Y., Murakami, G., Mukai, H., Yamazaki, T., Nakahara, D., Barron, A., Kimoto, T., and Kawato, S., PLoS One, 2011, vol. 6: e21631.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Maggio, N. and Segal, M., Scientific World J., 2010, vol. 10, pp. 462–469.CrossRefGoogle Scholar
  22. 22.
    Sopala, M., Frankiewicz, T., Parsons, C., and Danysz, W., Neurosci. Lett., 2000, vol. 281, pp. 143–146.CrossRefPubMedGoogle Scholar
  23. 23.
    Miyashita, K., Abe, H., Nakajima, T., Ishikawa, A., Nishiura-Suzuki, M., Naritomi, H., Tanaka, R., and Sawada, T., Neuroreport, 1994, vol. 5, pp. 945–948.CrossRefPubMedGoogle Scholar
  24. 24.
    Robertson, D.A., Beattie, J.E., Reid, I.C., and Balfour, D.J., Eur. J. Neurosci., 2005, vol. 21, pp. 1511–1520.CrossRefPubMedGoogle Scholar
  25. 25.
    Lambertsen, K.L., Biber, K., and Finsen, B., J. Cereb. Blood Flow Metab., 2012, vol. 32, pp. 1677–1698.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Doll, D.N., Barr, T.L., and Simpkins, J.W., Aging Dis., 2014, vol. 5, pp. 294–306.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Davies, C.A., Loddick, S.A., Toulmond, S., Stroemer, R.P., Hunt, J., and Rothwell, N.J., J. Cereb. Blood Flow Metab., 1999, vol. 19, pp. 87–98.CrossRefPubMedGoogle Scholar
  28. 28.
    Nolden-Koch, M., Breuer, E., and Block, F., J. Neurol., 2000, vol. 247 (Suppl. 3), p. 129.Google Scholar
  29. 29.
    Uchida, H., Fujita, Y., Matsueda, M., Umeda, M., Matsuda, S., Kato, H., Kasahara, J., and Araki, T., Cell Mol. Neurobiol., 2010, vol. 30, pp. 1125–1134.CrossRefPubMedGoogle Scholar
  30. 30.
    Jander, S., Schroeter, M., and Stoll, G., J. Neuroimmunol., 2000, vol. 109, pp. 181–187.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. V. Onufriev
    • 1
    Email author
  • S. V. Freiman
    • 1
  • Yu. V. Moiseeva
    • 1
  • M. Yu. Stepanichev
    • 1
  • N. A. Lazareva
    • 1
  • N. V. Gulyaeva
    • 1
  1. 1.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations