Advertisement

Neurochemical Journal

, Volume 11, Issue 3, pp 189–193 | Cite as

Remote ischemic conditioning of the brain: Phenomena and mechanisms

  • K. A. BaranovaEmail author
Review Articles
  • 51 Downloads

Abstract

Remote ischemic conditioning (RIC) is a short-term treatment with ischemia–reperfusion of any organ or limb to increase the resistance of tissues to ischemic or other lesions or general resistance of the body. According to modern ideas, the cerebroprotective effects of RIC operate via the neurohumoral mechanisms, systems of the inflammatory response, and modulatory peptides. The intracellular regulatory and receptor systems, kinase cascades, and genome are also involved. Activation of these mechanisms prevents calcium, glutamate, and oxidant overload of neurons in the brain and opening of the mitochondrial pores, triggering of anti-apoptotic and anti-inflammatory processes, and maintenance of energy metabolism and synaptic plasticity. Based on literature data we conclude that RIC is a simple, cheap, and efficient method of neuroprotection with great translational potential.

Keywords

distant ischemic preconditioning postconditioning brain adaptation mechanisms of neuroprotection 

Abbreviations

RIC

remote ischemic conditioning

IL

interleukin

HIF

hypoxia-inducible factor

BDNF

brainderived neurotrophic factor

TNF

tumor necrosis factor

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vladimirov, G.E., Galvyalo, M.Ya., Goryukhina, T.A., Dmitriev, G.A., Oppel’, V.V., and Raiko, Z.A., in Kislorodnoe golodanie i bor’ba s nim (voprosy trenirovki i pitaniya) (Oxygen Deficit and Its Treatment (Questions on Training and Diet)), Leningrad, 1939, pp. 43–104.Google Scholar
  2. 2.
    Sirotinin, N.N. and Sirotinin, M.M., Zhittya na visotakh ta khvoroba visoti (Life at Altitudes and Altitude Sickness), Kiev, 1939.Google Scholar
  3. 3.
    Murry, C.E., Jennings, R.B., and Reimer, K.A., Circulation, 1986, vol. 74, pp. 1124–1136.CrossRefPubMedGoogle Scholar
  4. 4.
    Cadet, J.K. and Krasnova, N., Mol. Neurobiol., 2009, vol. 39, pp. 50–61.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Samoilov, M.O., Mozg i adaptatsiya. Molekulyarno-kletochnye mekhanizmy (Brain and Adaptation. Molecular and Cellular Mechanisms), St. Petersburg: INF RAN, 1999.Google Scholar
  6. 6.
    Rybnikova, E.A., Mironova, V.I., Tyul’kova, E.I., and Samoilov, M.O., Zhurn. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2008, vol. 58, pp. 475–482.Google Scholar
  7. 7.
    Rybnikova, E.A., Vorob’ev, M.G., and Samoilov, M.O., Zhurn. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2012, vol. 62, pp. 364–371.Google Scholar
  8. 8.
    Rybnikova, E.A., Mironova, V.I., Pivina, S.G., Ordyan, N.E., Tyul’kova, E.I, and Samoilov, M.O., Dokl. Ross. Akad. Nauk, 2006, vol. 411, pp. 122–124.Google Scholar
  9. 9.
    Gho, B., Schoemaker, R., Doel, M., Duncker, D., and Verdouw, P., Circulation, 1996, vol. 94, pp. 2193–2200.CrossRefPubMedGoogle Scholar
  10. 10.
    Harkin, D.W., Barros D’Sa A.A., McCallion, K., Hoper, M., and Campbell, F.C., J. Vasc. Surg., 2002, vol. 35, pp. 1264–1273.CrossRefPubMedGoogle Scholar
  11. 11.
    Candilio, L., Malik, A., and Hausenloy, D.J., J. Cardiovasc. Med. (Hagerstown), 2013, vol. 14, pp. 193–205.CrossRefGoogle Scholar
  12. 12.
    Cheung, M.M., Kharbanda, R.K., Konstantinov, I.E., Shimizu, M., Frndova, H., Li, J., Holtby, H.M., Cox, P.N., Smallhorn, J.F., Van Arsdell, G.S., and Redington, A.N., J. Am. Coll. Cardiol., 2006, vol. 47, pp. 2277–2282.CrossRefPubMedGoogle Scholar
  13. 13.
    Hausenloy, D.J., Mwamure, P.K., Venugopal, V., Harris, J., Barnard, M., Grundy, E., Ashley, E., Vichare, S., Di Salvo, C., Kolvekar, S., Hayward, M., Keogh, B., Macallister, R.J., and Yellon, D.M, Lancet, 2007, vol. 370, pp. 575–579.CrossRefPubMedGoogle Scholar
  14. 14.
    Koti, R.S., Seifalian, A.M., and Davidson, B.R., Dig. Surg., 2003, vol. 20, pp. 383–396.CrossRefPubMedGoogle Scholar
  15. 15.
    Ren, C., Gao, M., Dornbos, D. 3rd, Ding, Y., Zeng, X., Luo, Y., and Ji, X., Neurol. Res., 2011, vol. 33, pp. 514–519.CrossRefPubMedGoogle Scholar
  16. 16.
    Plotkin, L.L. and Klink, Yu.P., Vestn. Anesteziologii Reanimatologii, 2015, vol. 12. Pp. 26–31.Google Scholar
  17. 17.
    Snyder, H.M., Corriveau, R.A., Craft, S., Faber, J.E., Greenberg, S.M., Knopman, D., Lamb, B.T., Montine, T.J., Nedergaard, M., Schaffer, C.B., Schneider, J.A., Wellington, C., Wilcock, D.M., Zipfel, G.J., Zlokovic, B., Bain, L.J., Bosetti, F., Galis, Z.S., Koroshetz, W., and Carrillo, M.C., Alzheimers Dement., 2015, vol. 11, pp. 710–717.CrossRefPubMedGoogle Scholar
  18. 18.
    Joseph, B., Pandit, V., Zangbar, B., Kulvatunyou, N., Khalil, M., Tang, A., O’Keeffe, T., Gries, L., Vercruysse, G., Friese, R.S., and Rhee, P., J. Trauma Acute Care Surg., 2015, vol. 78, pp. 698–703.CrossRefPubMedGoogle Scholar
  19. 19.
    Xu, J., Sun, S., Lu, X., Hu, X., Yang, M., and Tang, W., Crit. Care Med., 2015, vol. 43, pp. e12–e18.CrossRefPubMedGoogle Scholar
  20. 20.
    Zhou, Y., Fathali, N., Lekic, T., Ostrowski, R.P., Chen, C., Martin, R.D., Tang, J., and Zhang, J.H., Stroke, 2011, vol. 42, pp. 439–444.CrossRefPubMedGoogle Scholar
  21. 21.
    Li, S., Hu, X., Zhang, M., Zhou, F., Lin, N., Xia, Q., Zhou, Y., Qi, W., Zong, Y., Yang, H., and Wang, T., Behav. Brain Res., 2015, vol. 289, pp. 1–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Hougaard, K.D., Hjort, N., Zeidler, D., Sorensen, L., Norgaard, A., Hansen, T.M., von Weitzel-Mudersbach, P., Simonsen, C.Z., Damgaard, D., Gottrup, H., Svendsen, K., Rasmussen, P.V., Ribe, L.R., Mikkelsen, I.K., Nagenthiraja, K., Cho, T.H., Redington, A.N., Botker, H.E., Østergaard, L., Mouridsen, K., and Andersen, G., Stroke, 2014, vol. 45, pp. 159–167.CrossRefPubMedGoogle Scholar
  23. 23.
    Gorokhov, A.S., Shipulin, V.M., Podoksenov, Yu.K., Kozlov, B.N., Kuznetsov, M.S., Shishneva, E.V., Panfilov, D.S., Plotnikov, M.P., and Lebedeva, E.V., Angiologiya Sosudistaya Khirurgiya, 2012, vol. 18, pp. 100–105.Google Scholar
  24. 24.
    Walsh, S., Tang, T., Kullar, P., Tang, T.Y., Lapsley, M., Norden, A.G., and Gaunt, M.E., Eur. J. Cardiothorac. Surg., 2008, vol. 34, pp. 985–994.CrossRefPubMedGoogle Scholar
  25. 25.
    Heusch, G., Botker, H., Przyklenk, K., Redington, A., and Yellon, D., J. Am. Coll. Cardiol., 2015, vol. 65, pp. 177–195.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cherry-Allen, K.M., Gidday, J.M., Lee, J-M., Hershey, T., and Lang, C.E., J. Neurophysiol., 2015, vol. 113, pp. 3708–3719.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Joo, J.D., Kim, M., D’Agati, V.D., and Lee, H.T., J. Am. Soc. Nephrol., 2006, vol. 17, pp. 3115–3123.CrossRefPubMedGoogle Scholar
  28. 28.
    Redington, K.L., Disenhouse, T., Strantzas, S.C., Gladstone, R., Wei, C., Tropak, M.B., Dai, X., Manlhiot, C., Li, J., and Redington, A.N., Basic Res. Cardiol., 2012, vol. 107, p. 241.CrossRefPubMedGoogle Scholar
  29. 29.
    Mastitskaya, S., Marina, N., Gourine, A., Gilbey, M.P., Spyer, K.M., Teschemacher, A.G., Kasparov, S., Trapp, S., Ackland, G.L., and Gourine, A.V., Cardiovasc. Res., 2012, vol. 95, pp. 487–494.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Malhotra, S., Naggar, I., Stewart, M., and Rosenbaum, D.M., Brain Res., 2011, vol. 1386, pp. 184–190.CrossRefPubMedGoogle Scholar
  31. 31.
    Donato, M., Buchholz, B., Rodríguez, M., Pérez, V., Inserte, J., García-Dorado, D., and Gelpi, R.J., Exp. Physiol., 2013, vol. 98, pp. 425–434.CrossRefPubMedGoogle Scholar
  32. 32.
    Shimizu, M., Tropak, M., Diaz, R.J., Suto, F., Surendra, H., Kuzmin, E., Li, J., Gross, G., Wilson, G.J., Callahan, J., and Redington, A.N., Clin. Sci. (Lond.), 2009, vol. 117, pp. 191–200.CrossRefGoogle Scholar
  33. 33.
    Hess, D.C., Hoda, M.N., and Khan, M.B., Acta. Neurochir., 2015, vol. 121, pp. 45–48.CrossRefGoogle Scholar
  34. 34.
    Hess, D.C., Blauenfeldt, R.A., Andersen, G., Hougaard, K.D., Hoda, N., Ding, Y., and Ji, X., Nat. Rev. Neurol., 2015, vol. 11, pp. 698–710.CrossRefPubMedGoogle Scholar
  35. 35.
    Wei, M., Xin, P., Li, S., Tao, J., Li, Y., Li, J., Liu, M., Li, J., Zhu, W., and Redington, A.N., Circ. Res., 2011, vol. 108, pp. 1220–1225.CrossRefPubMedGoogle Scholar
  36. 36.
    Gao, X., Zhang, H., Takahashi, T., Hsieh, J., Liao, J., Steinberg, G.K., and Zhao, H., J. Neurochem., 2008, vol. 105, pp. 943–955.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Pain, T., Yang, X.-M., and Critz, C.D., Circulat. Res., 2000, vol. 87, pp. 460–466.CrossRefPubMedGoogle Scholar
  38. 38.
    Ong, S.B., Dongworth, R.K., Cabrera-Fuentes, H.A., and Hausenloy, D.J., Br. J. Pharmacol., 2015, vol. 172, pp. 2074–2084.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Maslov, L.N. and Lishmanov, Yu.B., Angiologiya Sosudistaya Khirurgiya, 2012, vol. 2, pp. 27–34.Google Scholar
  40. 40.
    Domenech, R., Macho, P., Schwarze, H., and Sanchez, G., Cardiovasc. Res., 2002, vol. 55, pp. 561–566.CrossRefPubMedGoogle Scholar
  41. 41.
    Wick, A., Wick, W., Waltenberger, J., Weller, M., Dichgans, J., and Schulz, J.B., J. Neurosci., 2002, vol. 22, pp. 6401–6407.PubMedGoogle Scholar
  42. 42.
    Rassaf, T., Totzeck, M., Hendgen-Cotta, U.B., Shiva, S., Heusch, G., and Kelm, M., Circ. Res., 2014, vol. 114, pp. 1601–1610.CrossRefPubMedGoogle Scholar
  43. 43.
    Kloner, R.A. and Jennings, R.B., Circulation, 2001, vol. 104, pp. 3158–3167.CrossRefPubMedGoogle Scholar
  44. 44.
    Zarubina, I.V., Goryainov, A.V., and Shabanov, P.D., Obzory Klinicheskoi Farmakologii Lekarstvennoi Terapii, 2010, vol. 2, pp. 3–12.Google Scholar
  45. 45.
    Baranova, K.A., Rybnikova, E.A., Churilova, A.V., Vetrovoy, O.V., and Samoilov, M.O., Neurochem. J., 2014, vol. 8, pp. 17–23.CrossRefGoogle Scholar
  46. 46.
    Ishii, S., Abe, T., Saito, T., Tsuchiya, T., Kanno, H., Miyazawa, M., Suzuki, M., Motoki, R., and Gotoh, M., J. Hepatobiliary Pancreat. Surg., 2001, vol. 8, pp. 461–468.CrossRefPubMedGoogle Scholar
  47. 47.
    Baranova, K.A., Mironova, V.I., Rybnikova, E.A., and Samoilov, M.O., Neurochem. J., 2010, vol. 4, pp. 35–40.CrossRefGoogle Scholar
  48. 48.
    Baranova, K.A., Rybnikova, E.A., and Samoilov, M.O., Neurochem. J., 2011, vol. 5, pp. 257–262.CrossRefGoogle Scholar
  49. 49.
    Baranova, K.A., Rybnikova, E.A., and Samoilov, M.O., Neurochem. J., 2015, vol. 9, pp. 108–115.CrossRefGoogle Scholar
  50. 50.
    Kalakech, H., Tamareille, S., Pons, S., Godin-Ribuot, D., Carmeliet, P., Furber, A., Martin, V., Berdeaux, A., Ghaleh, B., and Prunier, F., J. Mol. Cell. Cardiol., 2013, vol. 65, pp. 98–104.CrossRefPubMedGoogle Scholar
  51. 51.
    Xu, B., Dong, G.H., Liu, H., Wang, Y.Q., Wu, H.W., and Jing, H., Ann. Clin. Lab. Sci., 2005, vol. 35, pp. 161–168.PubMedGoogle Scholar
  52. 52.
    Brandli, A., Johnstone, D.M., and Stone, J., Invest. Ophthalmol. Vis. Sci., 2016, vol. 57, pp. 5302–5313.CrossRefPubMedGoogle Scholar
  53. 53.
    Mukandala, G., Tynan, R., Lanigan, S., and O’Connor, J.J., Brain Sci., 2016, vol. 6, p. 3390.CrossRefGoogle Scholar
  54. 54.
    Konstantinov, I., Arab, S., Kharbanda, R., Li, J., Cheung, M., Cherepanov, V., and Downey, G., Physiol. Genomics, 2004, vol. 19, pp. 143–150.CrossRefPubMedGoogle Scholar
  55. 55.
    Meng, R., Ding, Y., Asmaro, K., Brogan, D., Meng, L., Sui, M., Shi, J., Duan, Y., Sun, Z., Yu, Y., Jia, J., and Ji, X., Neurotherapeutics, 2015, vol. 12, pp. 667–677.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Vaibhav, K., Khan, M.B., Baban, B., Ahmed, H., Wang, P., Chaudhary, A., Fagan, S.C., Hess, D.C., Hoda, M., and Dhandapani, K.M., Stroke, 2015, vol. 46, p. 253.Google Scholar
  57. 57.
    Bond, A., Lodge, D., Hicks, C.A., Ward, M.A., and O’Neill, M.J., Eur. J. Pharmacol., 1999, vol. 380, pp. 91–99.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Pavlov Institute of PhysiologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations