Skip to main content
Log in

The activities of key antioxidant enzymes in the early postnatal development of rats

  • Experimental Articles
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

In this study, we investigated the activities of several antioxidant enzymes during the postnatal development of the brain and liver of rats. Experiments were performed on male rats of different ages, viz., 5, 10, 20, 30, and 90 days, so that the different periods of the brain development could be investigated. The activity of the enzymes of the antioxidant system (superoxide dismutase, catalase, and glutathione peroxidase) in the immature brain was found to be lower than in the brains of adult animals. Cytoplasmic superoxide dismutase was an exception: its activity declined along with development in both brain and liver. High activity of antioxidant enzymes on day 5 of postnatal development in rats was found, which may be associated with the adaptation to the environment with increased oxygen content. Our results led to the conclusion that the formation of the antioxidant system in the postnatal development of the brain is accompanied by redistribution of the enzyme activity between subcellular fractions, as well as changes in the contributions of the main pathways of Н2О2 elimination: the activity of glutathione system enzymes increases and the catalase activity decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dennery, P.A., Birth Defects Res. Part C: Embryo Today Rev., 2007, vol. 81, no. 3, pp. 155–162.

    Article  CAS  Google Scholar 

  2. Ray, P.D., Huang, B.W., and Tsuji, Y., Cell Signal, 2012, vol. 24, no. 5, pp. 981–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Blomgren, K. and Hagberg, H., Free Rad. Biol. Med., 2006, vol. 40, pp. 388–397.

    Article  CAS  PubMed  Google Scholar 

  4. Rice, D. and Barone, S.J., Environmental Health Perspectives, 2000, vol. 108, no. 3, pp. 511–533.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Semple, B.D., Blomgren, K., Gimlin, K., Ferriero, D.M., and Noble-Haeusslein, L.J., Prog. Neurobiology, 2013, vols. 106–107, pp. 1–16.

    Article  Google Scholar 

  6. Ermak, G. and Davies, K.J.A., Mol. Immunol., 2002, vol. 38, no. 10, pp. 713–721.

    Article  CAS  PubMed  Google Scholar 

  7. Covarrubias, L., Hernández-García, D., Schnabel, D., Salas-Vidal, E., and Castro-Obregón, S., Dev. Biol., 2008, vol. 320, pp. 1–11.

    Article  CAS  PubMed  Google Scholar 

  8. Ye, Z.-W., Zhang, J., Townsend, D.M., and Tew, K.D., Biochim. Biophys. Acta, 2014, vol. 1850, no. 8, pp. 1607–1621.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Galkina, O.V., Neurochem. J., 2013, vol. 7, no. 2, pp. 89–97.

    Article  CAS  Google Scholar 

  10. Culotta, V.C., Yang, M., and O’Halloran, T.V., Biochim. Biophys. Acta, 2006, vol. 1763, pp. 747–758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Savaskan, N.E., Borchert, A., Brauer, A.U., and Kuhn, H., Free Rad. Biol. Med., 2007, vol. 43, pp. 191–201.

    Article  CAS  PubMed  Google Scholar 

  12. Benzi, G. and Moretti, A., Free Rad. Biol. Med., 1995, vol. 19, pp. 77–101.

    Article  CAS  PubMed  Google Scholar 

  13. Nagy, K. and Zs.-Nagy, I.I., Arch. Gerontol. Geriatr., 1990, vol. 11, no. 3, pp. 285–291.

    Article  CAS  PubMed  Google Scholar 

  14. Hajos, F., Brain Res., 1975, vol. 93, pp. 485–489.

    Article  CAS  PubMed  Google Scholar 

  15. Chevari, S., Chaba, I., and Sekei, I., Lab. Delo, 1985, no. 11, pp. 678–681.

    PubMed  Google Scholar 

  16. Góth, L., Clin. Chim. Acta, 1991, vol. 196, pp. 143–152.

    Article  PubMed  Google Scholar 

  17. Smith, A.D. and Levander, O.A., Methods Enzymol., 2002, vol. 347, pp. 113–121.

    Article  CAS  PubMed  Google Scholar 

  18. Galkina, O.V., Putilina, F.E., and Eshchenko, N.D., Neurochem. J., 2014, vol. 8, no. 2, pp. 83–88.

    Article  CAS  Google Scholar 

  19. Erecinska, M., Cherian, S., and Silver, I.A., Progr. Neurobiology, 2004, vol. 73, pp. 397–445.

    Article  CAS  Google Scholar 

  20. Herlenius, E. and Lagercrantz, H., Experimental Neurology, 2004, vol. 190, pp. 8–21.

    Article  Google Scholar 

  21. Nakai, K., Adv. in Protein Chem., 2000, vol. 54, pp. 277–344.

    Article  CAS  Google Scholar 

  22. Galkina, O.V., Putilina, F.E., Eshchenko, N.D., and Blyudzin, Yu.A., Neirokhimiya, 2002, vol. 19, no. 4, pp. 287–292.

    Google Scholar 

  23. Galkina, O.V., Putilina, F.E., Romanova, A.A., and Eshchenko, N.D., Neurochem. J., 2009, vol. 3, no. 2, pp. 93–97.

    Article  Google Scholar 

  24. Aspberg, A. and Tottmar, O., Dev. Brain Res., 1992, vol. 66, no. 1, pp. 55–58.

    Article  CAS  Google Scholar 

  25. Ceballos-Picot, I., Nicole, A., Clement, M., Bourre, J.M., and Sinet, P.M., Mutat. Res., 1992, vol. 275, pp. 281–293.

    Article  CAS  PubMed  Google Scholar 

  26. Maestro, R.D. and McDonald, W., Mech. Ageing Dev., 1987, vol. 41, pp. 29–38.

    Article  PubMed  Google Scholar 

  27. Prasanthi, R.P.J., Devi, C.B., Basha, D.C., Reddy, N.S., and Reddy, G.R., Int. J. Dev. Neurosci., 2010, vol. 28, pp. 161–167.

    Article  CAS  PubMed  Google Scholar 

  28. Fukui, M. and Zhu, B.T., Free Rad. Biol. Med., 2010, vol. 48, pp. 821–830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang, T.T., Carlson, E.J., Kozy, H.M., Mantha, S., Goodman, S.I., Ursell, P.C., and Epstein, C.J., Free Rad. Biol. Med., 2001, vol. 31, pp. 1101–1110.

    Article  CAS  PubMed  Google Scholar 

  30. Copin, J.C., Gasche, Y., and Chan, P.H., Free Rad. Biol. Med., 2000, vol. 28, pp. 1571–1576.

    Article  CAS  PubMed  Google Scholar 

  31. Flanagan, S.W., Anderson, R.D., Ross, M.A., and Oberley, L.W., J. Neurochem., 2002, vol. 81, pp. 170–177.

    Article  CAS  PubMed  Google Scholar 

  32. Nicholls, P., Arch. Biochem. Biophys., 2012, vol. 525, no. 2, pp. 95–101.

    Article  CAS  PubMed  Google Scholar 

  33. Haan, De J.B., Cristiano, F., Iannello, R., Bladier, C., Kelner J., and Kola, I., Hum. Mol. Genet., 1996, vol. 5, no. 2, pp. 283–292.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bakhtyukov.

Additional information

Original Russian Text © A.A. Bakhtyukov, O.V. Galkina, N.D. Eshchenko, 2016, published in Neirokhimiya, 2016, Vol. 33, No. 3, pp. 215–221.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhtyukov, A.A., Galkina, O.V. & Eshchenko, N.D. The activities of key antioxidant enzymes in the early postnatal development of rats. Neurochem. J. 10, 199–204 (2016). https://doi.org/10.1134/S1819712416030041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712416030041

Keywords

Navigation