Neurochemical Journal

, Volume 10, Issue 2, pp 144–150 | Cite as

Regulation of caspase-3 content and activity in rat cortex in norm and after prenatal hypoxia

  • D. S. Vasilev
  • N. M. Dubrovskaya
  • N. N. Nalivaeva
  • I. A. ZhuravinEmail author
Experimental Articles


The analysis of caspase-3 activity, content and regulation in the brain cortex during the first month of postnatal ontogenesis in rats with normal development and after prenatal normobaric hypoxia on ?14 (3 h, 7% O2) has been performed. Prenatal hypoxia compared to controls was found to result in a statistically significant increase in the content (3.6-fold) and activity (5.3-fold) of caspase-3 in the neocortex of rats in the period of the most intensive synaptogenesis and cell elimination (P20–P35). A single intraventricular injection on ?20 of a caspase inhibitor Ac-DEVD-CHO altered the activity and content of this enzyme although the dynamics of the changes was different in rats with normal and pathological embryogenesis. In the first hours after inhibitor administration a decrease in caspase-3 activity was observed in both groups of animals. Later, on days 1–5 after injection, there was further decrease of caspase-3 activity (3.9-fold) in rats subjected to prenatal hypoxia although the enzyme content was not significantly different from the age-matched controls. On the contrary, in rats with normal embryogenesis on days 1–5 after the injection there was a significant (two-fold) increase in the content of active caspase-3 form and its enzyme activity (2.5-fold) although these characteristics returned down to the control values on the 15th day after inhibitor administration. After administration of Ac-DEVD-CHO to adult rats (P90) with normal development there was also caspase-3 inhibition 3 h after the injection, however no further increase in its activity on days 1–5 after injection, similar to those observed in young animals, has been found. The data obtained testify to the difference in the agerelated dynamics and regulation of the active form of caspase-3 in the period of the most intensive brain development of rats with normal embryogenesis and subjected to prenatal hypoxia.


ontogenesis prenatal hypoxia caspase-3 brain cortex rat Ac-DEVD-СHO 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lema Tomé, C.M., Nottingham, C.U., Smith, C.M., Beauchamp, A.S., Leung, P.W., and Turner, C.P., Neuroreport, 2006, vol. 17, pp. 779–783.CrossRefPubMedGoogle Scholar
  2. 2.
    Snigdha, S., Smith, E.D., Prieto, G.A., and Cotman, C.W., Neurosci. Bull., 2012, vol. 28, pp. 14–24.CrossRefPubMedGoogle Scholar
  3. 3.
    D’Amelio, M., Cavallucci, V., Middei, S., Marchetti, C., Pacioni, S., Ferri, A., Diamantini, A., De Zio, D., Carrara, P., Battistini, L., Moreno, S., Bacci, A., Ammassari-Teule, M., Marie, H., and Cecconi, F., Nature Neurosci., 2011, vol. 14, pp. 69–76.CrossRefPubMedGoogle Scholar
  4. 4.
    Chang, L.R., Liu, J.P., Song, Y.Z., Lu, T., Lu, G., and Wu, Y., Microsc. Res. Tech., 2011, vol. 74, pp. 153–158.CrossRefPubMedGoogle Scholar
  5. 5.
    Liu, J.P., Chang, L.R., Gao, X.L., and Wu, Y., Microsc. Res. Techn., 2008, vol. 71, pp. 633–638.CrossRefGoogle Scholar
  6. 6.
    Li, X.J., Jiang, L., Chen, L., Chen, H.S., and Li, X., Environ. Toxicol. Pharmacol., 2013, vol. 36, pp. 392–402.CrossRefPubMedGoogle Scholar
  7. 7.
    Gulyaeva, N.V., Biochemistry (Mosc.), 2003, vol. 68, pp. 1171–1180.PubMedGoogle Scholar
  8. 8.
    Kudryashov, I.E., Yakovlev, A.A., Kudryashova, I., and Gulyaeva, N.V., Neurosci. Lett., 2002, vol. 332, pp. 95–98.CrossRefPubMedGoogle Scholar
  9. 9.
    Kudryashova, I.V., Onufriev, M.V., Kudryashov, I.E., and Gulyaeva, N.V., Neurosci. Behav. Physiol., 2009, vol. 39, pp. 13–20.CrossRefPubMedGoogle Scholar
  10. 10.
    Hatip-Al-Khatib, I., Iwasaki, K., Chung, E.H., Egashira, N., Mishima, K., and Fujiwara, M., Life Sci., 2004, vol. 75, pp. 1967–1978.CrossRefPubMedGoogle Scholar
  11. 11.
    Zhuravin, I.A., Vasilev, D.S., Dubrovskaya, N.M., Kozlova, D.I., Kochkina, E.G., Plesneva, S.A., Tumanova, N.L., Alekseeva, O.S., Vjotosh, A.N., and Nalivaeva, N.N., in Neurodegenerative Diseases—from Genome to the Whole Organism, Ugryumov, M.V., Ed., Moscow: Nauchnaya Mysl’, 2014, vol. 2, pp. 419–437 [in Russian].Google Scholar
  12. 12.
    Dubrovskaia, N.M. and Zhuravin, I.A., Zh. Vyssh. Nerv. Deyat. im I.P. Pavlova, 2008, vol. 58, pp. 718–727 [in Russian].Google Scholar
  13. 13.
    Paxinos, G. and Watson, C., The Rat Brain in Stereotaxic Coordinates, San Diego: Elsevier Academic Press, 2005.Google Scholar
  14. 14.
    Bradford, M.M., Anal. Biochem., 1976, vol. 72, pp. 248–254.CrossRefPubMedGoogle Scholar
  15. 15.
    Yuan, J. and Yankner, B.A., Nature, 2000, vol. 407, pp. 802–809.CrossRefPubMedGoogle Scholar
  16. 16.
    Gulyaeva, N.V., Zh. Vyssh. Nerv. Deyat. im I.P. Pavlova, 2004, vol. 54, pp. 437–447 [in Russian].Google Scholar
  17. 17.
    Ribeil, J.A., Zermati, Y., Vandekerckhove, J., Dussiot, M., Kersual, J., and Hermine, O., J. Soc. Biol., 2005, vol. 199, pp. 219–231.CrossRefPubMedGoogle Scholar
  18. 18.
    Vasil’ev, D.S., Tumanova, N.L., and Zhuravin, I.A., Zh. Evol. Biokhim. Fiziol., 2008, vol. 44, pp. 258–267.PubMedGoogle Scholar
  19. 19.
    Zhao, Y.D., Ou, S., Cheng, S.Y., Xiao, Z., He, W.J., Zhang, J.H., and Ruan, H.Z., J. Neurosci. Res., 2013, vol. 91, pp. 1165–1173.CrossRefPubMedGoogle Scholar
  20. 20.
    Wang, X., Hagberg, H., Nie, C., Zhu, C., Ikeda, T., and Mallard, C., J. Neuropathol. Exp. Neurol., 2007, vol. 66, pp. 552–561.CrossRefPubMedGoogle Scholar
  21. 21.
    Schotte, P., Van Criekinge, W., Van de Craen, M., Van Loo, G., Desmedt, M., Grooten, J., Cornelissen, M., De Ridder, L. Vandekerckhove, J., Fiers, W., Vandenabeele, P., and Beyaert, R., Biochem. Biophys. Res. Commun., 1998, vol. 251, pp. 379–387.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • D. S. Vasilev
    • 1
    • 2
  • N. M. Dubrovskaya
    • 1
    • 2
  • N. N. Nalivaeva
    • 1
  • I. A. Zhuravin
    • 1
    • 2
    Email author
  1. 1.Sechenov Institute of Evolutionary Physiology and Biochemistry of RASSt. PetersburgRussia
  2. 2.Saint-Petersburg State Pediatric Medical UniversityMinistry of Healthcare of the Russian FederationSt. PetersburgRussia

Personalised recommendations