Neurochemical Journal

, Volume 10, Issue 2, pp 120–130 | Cite as

Combined treatment with pantothenic acid derivatives and memantine alleviates scopolamine-induced amnesia in rats: The involvement of the thiol redox state and coenzyme A

  • M. Yu. Stepanichev
  • D. A. Markov
  • S. V. Freiman
  • O. A. Frolova
  • S. N. Omelyanchik
  • T. A. Borodina
  • M. R. Novikova
  • N. P. Kanunnikova
  • M. V. Onufriev
  • A. G. Moiseenok
  • N. V. GulyaevaEmail author
Experimental Articles


Free-radical-mediated processes are involved in a variety of physiological events, while oxidative stress and related redox deregulation are implicated in various pathological events. Tripeptide glutathione plays an important role in the antioxidant defense of the brain, particularly in the maintenance of the optimal redox state in neurons and glial cells. We studied the combined effects of pantothenic acid derivatives, pantothenol and calcium pantothenate, and memantine, which is a glutamate receptor antagonist that is widely used for the treatment of dementia, on amnesia induced by scopolamine in rats. Scopolamine induced amnesia in rats; however, unexpectedly, this effect was even more expressed in the memantine-pretreated animals. Memory impairments were less manifested in the rats that were pretreated with memantine in combination with panthenol or calcium pantothenate. The detrimental scopolamine effect on memory was accompanied by significant depletions of glutathione and coenzyme A in the brain. While memantine recovered the glutathione status to some extent, it nevertheless further aggravated the scopolamine influence on coenzyme A levels. An alleviation of scopolamine-induced memory impairments that was observed after combined pretreatment with memantine and panthenol or calcium pantothenate was accompanied by a normalization of coenzyme A levels, while the effects on glutathione redox did not correlate with the behavioral data.


brain redox regulation glutathione scopolamine-induced amnesia memantine hydrochloride pantothenic acid derivatives panthenol calcium pantothenate coenzyme A 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moiseenok, A.G., Gurinovich, V.A., Omel’yanchik, S.N., and Slyshenkov, V.A., Ukr. Biokhim. Zh., 2004, vol. 76, pp. 68–81.Google Scholar
  2. 2.
    Moiseenok, A.G., Komar, V.I., Khomich, T.I., Kanunnikova, N.P., and Slyshenkov, V.S., BioFactors, 2000, vol. 11, pp. 53–55.CrossRefPubMedGoogle Scholar
  3. 3.
    Slyshenkov, V.S., Omelyanchik, S.N., Moiseenok, A.G., Trebukhina, R.V., and Wojtczak, L., Free Radic. Biol. Med., 1998, vol. 24, pp. 894–849.CrossRefPubMedGoogle Scholar
  4. 4.
    Slyshenkov, V.S., Rakowska, M., Moiseenok, A.G., and Wojtczak, L., Free Radic. Biol. Med., 1995, vol. 19, pp. 767–772.CrossRefPubMedGoogle Scholar
  5. 5.
    Slyshenkov, V.S., Moiseenok, A.G., and Wojtczak, L., Free Radic. Biol. Med., 1996, vol. 20, pp. 793–800.CrossRefPubMedGoogle Scholar
  6. 6.
    Slyshenkov, V.S., Rakowska, M., and Wojtczak, L., Acta Biochim. Polon., 1996, vol. 43, pp. 407–410.PubMedGoogle Scholar
  7. 7.
    Moiseenok, A.G., Gurinovich, V.A., Yevkovich, I.N., Badun, G.A., Tyasto, Z.A., Stepanichev, M.Yu., Lazareva, N.A., Onufriev, M.V., and Gulyaeva, N.V., Neurochem. J., 2007, vol. 1, pp. 299–304.CrossRefGoogle Scholar
  8. 8.
    Wojtczak, L. and Slyshenkov, V.S., BioFactors, 2003, vol. 17, pp. 61–73.CrossRefPubMedGoogle Scholar
  9. 9.
    Kumerova, A.O., Utno, L.Ia., Lipsberga, Z.E., and Shkestere, I.Ya., Byull. Eksp. Biol. Med., 1992, vol. 113, pp. 373–375.CrossRefGoogle Scholar
  10. 10.
    Kumerova, A.O., Shkesters, A.P., and Shkestere, I.Ya., Byull. Eksp. Biol. Med., 1994, vol. 117, pp. 574–576.CrossRefGoogle Scholar
  11. 11.
    Etensel, B., Ozkisacik, S., Ozkara, E., Karul, A., Oztan, O., Yazici, M., and Gürsoy, H., Pediatr. Surg. Int., 2007, vol. 23, pp. 177–181.CrossRefPubMedGoogle Scholar
  12. 12.
    Onufriev, M.V., Stepanichev, M.Yu., Lazareva, N.A., Katkovskaya, I.N., Tishkina, A.O., Moiseenok, A.G., and Gulyaeva, N.V., Neurochem. J., 2010, vol. 4, pp. 148–152.CrossRefGoogle Scholar
  13. 13.
    Francis, P.T., Parsons, C.G., and Jones, R.W., Expert Rev. Neurother., 2012, vol. 12, pp. 1351–1365.CrossRefPubMedGoogle Scholar
  14. 14.
    Sastre, J., Pallardó, F.V., and Viña, J., Free Radic. Biol. Med., 2003, vol. 35, pp. 1–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Currais, A. and Maher, P., Antioxid. Redox Signal., 2013, vol. 19, pp. 813–822.CrossRefPubMedGoogle Scholar
  16. 16.
    Rosales-Corral, S., Reiter, R.J., Tan, D.X., Ortiz, G.G., and Lopez-Armas, G., Antioxid. Redox Signal., 2010, vol. 13, pp. 193–247.CrossRefPubMedGoogle Scholar
  17. 17.
    Agostinho, P., Cunha, R.A., and Oliveira, C., Curr. Pharm. Des., 2010, vol. 16, pp. 2766–2778.CrossRefPubMedGoogle Scholar
  18. 18.
    Smeyne, M. and Smeyne, R.J., Free Radic. Biol. Med., 2013, vol. 62, pp. 13–25.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Cookson, M.R. and Bandmann, O., Hum. Mol. Genet., 2010, vol. 19, pp. R21–R27.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Turner, C. and Schapira, A.H., J. Bioenerg. Biomembr., 2010, vol. 42, pp. 193–198.CrossRefPubMedGoogle Scholar
  21. 21.
    Yao, J.K. and Keshavan, M.S., Antioxid. Redox Signal., 2011, vol. 15, pp. 2011–2035.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bitanihirwe, B.K. and Woo, T.U., Neurosci. Biobehav. Rev., 2011, vol. 35, pp. 878–893.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Steckert, A.V., Valvassori, S.S., Moretti, M., Dal-Pizzol, F., and Quevedo, J., Neurochem. Res., 2010, vol. 35, pp. 1295–1301.CrossRefPubMedGoogle Scholar
  24. 24.
    Anderson, M.E., Underwood, M., Bridges, R.J., and Meister, A., FASEB J., 1989, vol. 3, pp. 2527–2531.PubMedGoogle Scholar
  25. 25.
    Slivka, A., Spina, M.B., and Cohen, G., Neurosci. Lett., 1987, vol. 74, pp. 123–128.CrossRefGoogle Scholar
  26. 26.
    Shaw, C.A., Pasqualotto, B.A., and Curry, K., Neuroreport, 1996, vol. 7, pp. 1149–1152.CrossRefPubMedGoogle Scholar
  27. 27.
    Gozlan, H. and Ben-Ari, Y., Trends Pharmacol. Sci., 1995, vol. 16, pp. 368–374.CrossRefPubMedGoogle Scholar
  28. 28.
    Janaky, R., Ogita, K., Pasqualotto, B.A., Bains, J.S., Oja, S.S., Yoneda, Y., and Shaw, C.A., J. Neurochem., 1999, vol. 73, pp. 889–902.CrossRefPubMedGoogle Scholar
  29. 29.
    Cruz-Aguado, R., Almaguer-Melian, W., Diaz, C.M., Lorigados, L., and Bergado, J., Brain Res. Bull., 2001, vol. 55, pp. 327–333.CrossRefPubMedGoogle Scholar
  30. 30.
    Dean, O., Bush, A.I., Berk, M., Copolov, D.L., and van den Buuse, M., Behav. Brain Res., 2009, vol. 198, pp. 258–262.CrossRefPubMedGoogle Scholar
  31. 31.
    Kamboj, A., Kiran, R., and Sandhir, R., Exp. Brain Res., 2006, vol. 170, pp. 567–575.CrossRefPubMedGoogle Scholar
  32. 32.
    Emir, U.E., Raatz, S., McPherson, S., Hodges, J.S., Torkelson, C., and Tawfik, P., NMR Biomed., 2011, vol. 24, pp. 888–894.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Aoyama, K. and Nakaki, T., Int. J. Mol. Sci., 2013, vol. 14, pp. 21021–21044.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Mandal, P.K., Tripathi, M., and Sugunan, S., Biochem. Biophys. Res. Commun., 2012, vol. 417, pp. 43–48.CrossRefPubMedGoogle Scholar
  35. 35.
    Srinivasan, R., Ratiney, H., Hammond-Rosenbluth, K.E., Pelletier, D., and Nelson, S.J., Magn. Reson. Imaging., 2010, vol. 28, pp. 163–170.CrossRefPubMedGoogle Scholar
  36. 36.
    Choi, I.Y., Lee, S.P., Denney, D.R., and Lynch, S.G., Mult. Scler., 2011, vol. 17, pp. 289–296.CrossRefPubMedGoogle Scholar
  37. 37.
    Jenner, P., Lancet, 1994, vol. 344, pp. 796–798.CrossRefPubMedGoogle Scholar
  38. 38.
    Jenner, P., Ann. Neurol., 2003, vol. 53, pp. S26–S36.CrossRefPubMedGoogle Scholar
  39. 39.
    Reus, G.Z., Stringari, R.B., Kirscha, T.R., Fries, G.R., Kapczinski, F., Roesler, R., and Quevedo, J., Brain Res. Bull., 2010, vol. 81, pp. 585–589.CrossRefPubMedGoogle Scholar
  40. 40.
    Drever, B.D., Anderson, W.G.L., Johnson, H., O’Callaghan, M., Seo, S., Choi, D.Y., Riedel, G., and Platt, B., J. Alzheimer’s Dis., 2007, vol. 12, pp. 319–333.Google Scholar
  41. 41.
    King, R.A. and Glasser, R.L., Physiol. Behav., 1973, vol. 10, pp. 817–819.CrossRefPubMedGoogle Scholar
  42. 42.
    Sampson, M., Gopaul, N., Davies, I., Hughes, D., and Carrier, M., Diabetes Care, 2002, vol. 25, pp. 537–541.CrossRefPubMedGoogle Scholar
  43. 43.
    Akerboom, T. and Sies, H., Methods Enzymol., 1981, vol. 77, pp. 373–382.CrossRefPubMedGoogle Scholar
  44. 44.
    Nassiri-Asl, M., Moghbelinejad, S., Abbasi, E., Yonesi, F., Haghighi, M.R., Lotfizadeh, M., and Bazahang, P., Epilepsy Behav., 2013, vol. 28, pp. 151–155.CrossRefPubMedGoogle Scholar
  45. 45.
    Carlberg, I., Methods Enzymol., 1985, vol. 13, pp. 484–490.CrossRefGoogle Scholar
  46. 46.
    Habig, W.H., Pabst, M.J., and Jacoby, W.B., J. Biol. Chem., 1974, vol. 249, pp. 7130–7139.PubMedGoogle Scholar
  47. 47.
    McDougal, D.B. and Dargar, R.V., Anal. Biochem., 1979, vol. 97, pp. 103–115.CrossRefPubMedGoogle Scholar
  48. 48.
    Bray, T.M. and Taylor, C.G., Can. J. Physiol. Pharmacol., 1993, vol. 71, pp. 746–751.CrossRefPubMedGoogle Scholar
  49. 49.
    Meister, A., J. Biol. Chem., 1988, vol. 263, pp. 17205–17208.PubMedGoogle Scholar
  50. 50.
    Messier, C., Durkin, T., Mrabet, O., and Destrade, C., Behav. Brain Res., 1990, vol. 39, pp. 135–143.CrossRefPubMedGoogle Scholar
  51. 51.
    Durkin, T.P., Messier, C., de Boer, P., and Westerink, B.H., Behav. Brain Res., 1992, vol. 49, pp. 181–188.CrossRefPubMedGoogle Scholar
  52. 52.
    Khalifa, A.E., Hum. Exp. Toxicol., 2004, vol. 23, pp. 439–445.CrossRefPubMedGoogle Scholar
  53. 53.
    Fan, Y., Hu, J., Li, J., Yang, Z., Xin, X., Wang, J., Ding, J., and Geng, M., Neurosci. Lett., 2005, vol. 374, pp. 222–226.CrossRefPubMedGoogle Scholar
  54. 54.
    Tota, S., Nath, C., Najmi, A.K., Shukla, R., and Hanif, K., Behav. Brain Res., 2012, vol. 232, pp. 66–76.CrossRefPubMedGoogle Scholar
  55. 55.
    Umukoro, S., Adewole, F.A., Eduviere, A.T., Aderibigbe, A.O., and Onwuchekwa, C., Drug. Res. (Stuttg.), 2013, vol. 64, pp. 236–239.CrossRefGoogle Scholar
  56. 56.
    Alikatte, K.L., Akondi, B.R., Yerragunta, V.G., Veerareddy, P.R., and Palle, S., Brain Dev., 2012, vol. 34, pp. 844–851.CrossRefPubMedGoogle Scholar
  57. 57.
    Jeong, E.J., Lee, K.Y., Kim, S.H., Sung, S.H., and Kim, Y.C., Eur. J. Pharmacol., 2008, vol. 588, pp. 78–84.CrossRefPubMedGoogle Scholar
  58. 58.
    Goverdhan, P., Sravanthi, A., and Mamatha, T., Int. J. Alzheimers Dis., 2012, vol. 2012, 974013.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Falsafi, S.K., Deli, A., Hoger, H., Pollak, A., and Lubec G., PLoS One, 2012, vol. 7, e32082.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Doguc, D.K., Delibas, N., Vural, H., Altuntas, I., Sutcu, R., and Sonmez, Y., Behav. Pharmacol., 2012, vol. 23, pp. 762–770.CrossRefPubMedGoogle Scholar
  61. 61.
    Figueredo, L.Z., Moreira, K.M., Ferreira, T.L., Fornari, R.V., and Oliveira, M.G., Brain Res. Bull., 2008, vol. 77, pp. 71–76.CrossRefPubMedGoogle Scholar
  62. 62.
    Moreira, K.M., Ferreira, T.L., Fornari, R.V., Figueredo, L.Z.P., and Oliveira, M.G.M., Brain Res. Bull., 2005, vol. 67, pp. 504–508.CrossRefGoogle Scholar
  63. 63.
    Pakpour, B., Ahmadi, S., Nayer-Nouri, T., Oryan, S., and Zarrindast, M.R., Behav. Pharmacol., 2010, vol. 21, pp. 719–726.CrossRefPubMedGoogle Scholar
  64. 64.
    Mahmoodi, G., Ahmadi, S., Pourmotabbed, A., Oryan, S., and Zarrindast, M.R., Neurobiol. Learn. Mem., 2010, vol. 94, pp. 83–90.CrossRefPubMedGoogle Scholar
  65. 65.
    Ihalainen, J., Sarajärvi, T., Rasmusson, D., Kemppainen, S., Keski-Rahkonen, P., Lehtonen, M., Banerjee, P.K., Semba, K., and Tanila, H., Neuropharmacology, 2011, vol. 61, pp. 891–899.CrossRefPubMedGoogle Scholar
  66. 66.
    Minkeviciene, R., Banerjee, P., and Tanila, H., J. Pharmacol. Exp. Ther., 2004, vol. 311, pp. 677–682.CrossRefPubMedGoogle Scholar
  67. 67.
    Nakamura, S., Murayama, N., Noshita, T., Katsuragi, R., Ohno, T., Eur. J. Pharmacol., 2006, vol. 548, pp. 115–122.CrossRefPubMedGoogle Scholar
  68. 68.
    Van Dam, D., Abramowski, D., Staufenbiel, M., and De Deyn, P.P., Psychopharmacol., 2005, vol. 180, pp. 177–190.CrossRefGoogle Scholar
  69. 69.
    VanDam, D. and De Deyn, P.P., Eur. Neuropsychopharmacol., 2006, vol. 16, pp. 59–69.CrossRefGoogle Scholar
  70. 70.
    Parsons, C.G., Albrecht, S., and Danysz, W., Neuropharmacology, 2007, vol. 53, pp. 699–723.CrossRefPubMedGoogle Scholar
  71. 71.
    Busquet, P., Capurro, V., Cavalli, A., Piomelli, D., Reggiani, A., and Bertorelli, R., J. Pharmacol. Sci., 2012, vol. 120, pp. 305–309.CrossRefPubMedGoogle Scholar
  72. 72.
    Parsons, C.G., Danysz, W., Dekudny, A., and Plute, I., Neurotox. Res., 2013, vol. 24, pp. 358–369.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Creeley, C.E., Wozniak, D.F., Labruyere, J., Taylor, G.T., and Olney, J.W., J. Neurosci., 2006, vol. 26, pp. 3923–3932.CrossRefPubMedGoogle Scholar
  74. 74.
    Rammsayer, T.H., Brain Res., 2006, vols. 1073–1074, pp. 407–416.CrossRefPubMedGoogle Scholar
  75. 75.
    Schugens, M.M., Egerter, R., Daum, I., Schepelmann, K., Klockgether, T., and Loschmann, P.A., Neurosci. Lett., 1997, vol. 224, pp. 57–60.CrossRefPubMedGoogle Scholar
  76. 76.
    Misztal, M. and Danysz, W., Behav. Pharmacol., 1995, vols. 5–6, pp. 550–561.Google Scholar
  77. 77.
    Kotermanski, S.E., Johnson, J.W., and Thiels, E., Pharmacol. Biochem. Behav., 2013, vol. 109, pp. 67–76.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Kotermanski, S.E., Wood, J.T., and Johnson, J.W., J. Physiol., 2009, vol. 587, pp. 4589–4604.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Dringen, R., Progr. Neurobiol., 2000, vol. 62, pp. 649–671.CrossRefGoogle Scholar
  80. 80.
    Sucher, N.J. and Lipton, S.A., J. Neurosci. Res., 1991, vol. 30, pp. 582–591.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • M. Yu. Stepanichev
    • 1
  • D. A. Markov
    • 1
  • S. V. Freiman
    • 1
  • O. A. Frolova
    • 1
  • S. N. Omelyanchik
    • 2
  • T. A. Borodina
    • 2
  • M. R. Novikova
    • 1
  • N. P. Kanunnikova
    • 3
  • M. V. Onufriev
    • 1
  • A. G. Moiseenok
    • 2
  • N. V. Gulyaeva
    • 1
    Email author
  1. 1.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Biochemistry of Biologically Active CompoundsGrodnoBelarus
  3. 3.Grodno State Medical UniversityGrodnoBelarus

Personalised recommendations