Advertisement

Neurochemical Journal

, Volume 10, Issue 2, pp 106–114 | Cite as

The characteristics of the expression of the Cdk1 and Cyclin B1 Proteins in the brain of the Yakut ground squirrel (Spermophilus undulatus) at different stages of the hibernation cycle

  • M. V. OnufrievEmail author
  • T. P. Semenova
  • E. P. Volkova
  • M. A. Sergun’kina
  • A. A. Yakovlev
  • N. M. Zakharova
  • N. V. Gulyaeva
Experimental Articles
  • 21 Downloads

Abstract

We performed a comparison of the characteristics of two cell-cycle proteins, viz., Cdk1 and Cyclin B1 (CycB1), in different brain regions of Yakut long-tailed ground squirrels (Spermophilus undulatus) at various stages of their hibernation cycle. The experiments were performed in the winter period (January to February) in four groups of animals that weighed 600–800 g, viz., animals entering hibernation (n = 9, brain T = 10°C); ground squirrels on the 6th–7th day of hibernation (n = 9, brain T = 1–2°C); animals that were awakened in the middle of hibernation at a brain temperature of 10°C (n = 6), and animals that were awakened at a brain temperature of 31–32°C (n = 8). The control group consisted of summer active animals (n = 8, brain T = 37–38°C) that were taken in mid-June to the beginning of July. We analyzed the mRNA and protein levels of Cdk1 and Cyclin B1 (CycB1) in the frontal cortex, hippocampus, cerebellum, and the caudal part of the brainstem. Our results indicate that the peak expression of Cdk1 mRNA in the frontal cortex, hippocampus, cerebellum, and caudal part of the brainstem of the hibernating animals occurred at different stages of their annual cycle, thus indicating region-specific regulation of Cdk1 mRNA in the brains of hibernating animals. A decreased Cdk1 protein level during hibernation (brain T = 1–2°C) in the hippocampus and the cerebellum, as compared to both the summer active phase (brain T = 37–38°C) and the late entrance into the hibernation phase (brain T = 10°C) indicates that the morphological plasticity of these structures is reduced in hibernating animals. Despite the overall low mRNA expression of Cdk1 and CycB1, the frontal cortex is characterized by synchronously high levels of Cdk1 (brain T = +10°C, p = 0.066) and CycB1 (brain T = 31–32°C, p = 0.014) proteins as compared to the hibernation period (brain T = 1–2°C). The Spearmen correlation between Cdk1 and CycB1 mRNA expression in the frontal cortex among all groups was p = 0.001, R = 0.65; in the cerebellum among all groups p = 0.010, R = 0.52. An increase in Cdk1 expression in the cortex and hippocampus of ground squirrels during a brain temperature increase from 1–2°C to 31–32°C reflects the development of morphological functional rearrangements that are crucial for either the development of new interneuronal connections or for restoration of old ones that are necessary for the integrative activity of the brain during dramatic changes in its functional state in the period of transition of the animals from hibernation to wakefulness.

Keywords

hibernation cycle Yakut ground squirrels cell cycle mRNA and protein expression of Cdk1 mRNA and protein expression of CycB1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Martin, K.C., Barad, M., and Kandel, E.R., Curr. Opin. Neurobiol., 2000, vol. 10, no. 5, pp. 587–592.CrossRefPubMedGoogle Scholar
  2. 2.
    Steward, O. and Shuman, E.M., Neuron, 2003, vol. 40, no. 2, pp. 347–359.CrossRefPubMedGoogle Scholar
  3. 3.
    Piper, M. and Holt, C., Ann. Rev. Cell. Dev. Biol., 2004, vol. 20, pp. 505–523.CrossRefGoogle Scholar
  4. 4.
    Gomazkov, O.A., Neirogenez kak adaptivnaya funktsiya mozga (Neurogenesis as an Adaptive Function of the Brain), Moscow: IKAR, 2013.Google Scholar
  5. 5.
    Knights, C.D. and Pestell, R.G., The Cell Cycle. Therapeutic Targeting of Cell Cycle Regulatory Components and Effector Pathways in Cancer. Cancer Drug Discovery and Development: Molecular Targeting in Oncology, Kaufman, H.L., Walder, S., Antman, K. Totowa, Eds., New Jersey: Humana Press, 2003.Google Scholar
  6. 6.
    Ming, G.L., Wong, S.T., Henley, J., Yuan, X.B., Song, H.J., Spitzer, N.C., and Poo, M.M., Science, 2002, vol. 293, no. 5534, pp. 411–418.Google Scholar
  7. 7.
    Pappas, G.D., Kriho, V., and Pesold, C., J. Neurocytol., 2001, vol. 30, no. 5, pp. 413–425.CrossRefPubMedGoogle Scholar
  8. 8.
    Bibb, J.A., Snyder, G.L., Nishi, A., Yan, Z., Meijer, L., Fienberg, A.A., Tsai, L.H., Kwon, Y.T., Girault, J.A., Czernik, A.J., Huganir, R.L., Hemmings, H.C., Nairn, A.C., and Greengard, P., Nature, 1999, vol. 402, no. 6762, pp. 669–671.CrossRefPubMedGoogle Scholar
  9. 9.
    Hawashi, A.H., Benavides, D.R., Nguyen, C., Kansy, J.W., Hayashi, K., Chambon, P., Greengard, P., Powell, C.M., Cooper, D.C., and Bibb, J.A., Nat. Neurosci., 2007, vol. 10, no. 7, pp. 880–886.CrossRefGoogle Scholar
  10. 10.
    Zhang, S., Edelmann, L., Liu, J., Crandall, J.E., and Morabito, M.A., J. Neurosci., 2008, vol. 28, no. 2, pp. 415–424.CrossRefPubMedGoogle Scholar
  11. 11.
    Dhariwala, F.A. and Rajadhyaksha, M.S., Cell Mol. Neurobiol., 2008, vol. 28, pp. 351–369.CrossRefPubMedGoogle Scholar
  12. 12.
    Lagace, D.C., Benavides, D.R., Kansy, J.W., Mapelli, M., Greengard, P., Bibb, J.A., and Eisch, A.J., PNAS, 2008, vol. 10, no. 47, pp. 18567–18571.CrossRefGoogle Scholar
  13. 13.
    Volkova, E.P., Sergun’kina, M.A., Yakovlev, A.A., Onufriev, M.V., Semenova, T.P., Zakharova, N.M., and Gulyaeva, N.V., Expression of cell cycle proteins in ground squirrel brain regions and their role in regulation of brain plasticity during the hibernation, VII s″ezd Sibirskogo fiziologicheskogo obshchestva (7th Meeting of the Siberian Physiological Society), Krasnoyarsk, 2012, p. 262.Google Scholar
  14. 14.
    Magarin, A.M., McEwen, B.S., Saboureau, M., and Pevet, P., PNAS, 2006, vol. 103, no. 49, pp. 18775–18780.CrossRefGoogle Scholar
  15. 15.
    Popov, V.I., Medvedev, N.I., Patrushev, I.V., Ignat’ev, D.A., Morenkov, E.D., and Stewart, M.G., Neuroscience, 2007, vol. 149, pp. 549–560.CrossRefPubMedGoogle Scholar
  16. 16.
    Ohe, Ch.G., Darian-Smith, C., Garner, C.C., and Heller, H.C., J. Neuroscience, 2006, vol. 26, no. 41, pp. 10590–10598.CrossRefPubMedGoogle Scholar
  17. 17.
    Ohe, Ch.G., Garner, C., Darian-Smith, C., and Heller, H.C., J. Neuroscience, 2007, vol. 27, no. 1, pp. 84–92.CrossRefPubMedGoogle Scholar
  18. 18.
    Sauve, D.M., J. Cell Biol., 1999, vol. 145, pp. 225–235.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Popov, V.I., Kraev, I.I., Ignat’ev, D.A., and Stewart, M.G., Neural. Plast., 2011, p. 867525.Google Scholar
  20. 20.
    Amorese, D., Swan, H., and Bamburg, J., Proc. Natl. Acad. Sci. USA, 1982, vol. 79, pp. 6375–6379.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wang, L.C.H., Cryo. Letters, 1985, vol. 6, no. 4, pp. 257–274.Google Scholar
  22. 22.
    Slonim, A.D., Fiziologicheskie sostoyaniya (zimnyaya spyachka, letnyaya spyachka, adaptivnaya gipotermiya ptits, diapauza nasekomykh). Rukovodstvo po fiziologii. Ekologicheskaya fiziologiya zhivotnykh (Physiological States: Hibernation, Estivation, Adaptive Hypothermia of Birds, Diapauses of Insects. Physiological Guide. Ecological Physiology of Animals), Leningrad: Nauka, 1979, vol.1.Google Scholar
  23. 23.
    Solomonov, N.G., Osnovnye itogi i zadachi izucheniya zimnei spyachki gryzunov Yakutii. Ekologo-fiziologicheskie kharakteristiki prirodnykh gipometabolicheskikh sostoyanii (Main Results and Aims of Investigation of Yakut Rodents Hibernation. Ecological Physiological Characteristics of Natural Hypometabolic Conditions), Kolaeva, S.G., Ed., Pushchino: Otdel nauchno-tekhnicheskoi informatsii PNTs RAN, 1992.Google Scholar
  24. 24.
    Anufriev, A.I., Ekologicheskie mekhanizmy temperaturnykh adaptatsii mlekopitayushchikh i zimuyushchikh ptits Yakutii (Ecological Mechanisms of Temperature Adaptations of Yakutia Mammals and Winter Birds), Novosibirsk: SO RAN, 2013.Google Scholar
  25. 25.
    Zakharova, N.M., Fundamental’nye issledovaniya, 2014, no. 6, pp. 1401–1405.Google Scholar
  26. 26.
    Beckman, A.L. and Stanton, T.L., in The Neural Basis of Behaviour, Beckman, A.L., Ed., NY: Spectrum, 1982, pp. 19–45.Google Scholar
  27. 27.
    Belousov, A.V., Uspekhi Fiziologicheskikh Nauk, 1993, vol. 242, pp. 109–122.Google Scholar
  28. 28.
    Drew, K.L., Buck, C.L., Barnes, B.M., Christian, S.L., Rasley, B.T., and Harris, M.B., J. Neurochem., 2007, vol. 102, no. 6, pp. 1713–1726.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Thierry, A.M., Javoy, F., and Glovinski, J., J. Pharmacol. ExpTher., 1968, vol. 163, no. 1, pp. 163–167.Google Scholar
  30. 30.
    Bradford, M.M., Anal. Biochem., 1976, vol. 72, pp. 248–254.CrossRefPubMedGoogle Scholar
  31. 31.
    O’Hara, B.F., Watson, F.L., Srere, H.K., Kumar, H., Wiler, S.W., Welch, S.K., Bitting, L., Heller, H.C., and Kilduff, T.S., J. Neuroscience, 1999, vol. 19, no. 10, pp. 3781–3790.PubMedGoogle Scholar
  32. 32.
    Naumenko, V.S., Tkachev, S.E., Kulikov, A.V., Semenova, T.P., Amerkhanov, Z.G., Smirnova, N.P., and Popova, N.K., Genes Brain and Behavior, 2008, vol. 7, no. 2, pp. 300–305.CrossRefGoogle Scholar
  33. 33.
    Murav’eva, L.I. and Budantsev, A.Yu., Usp. Sovrem. Biol., 1983, vol. 96, no. 1(4).Google Scholar
  34. 34.
    Bauman, W.A., Hashim, A., and Sershen, H., Brain Res., 1989, vol. 500, pp. 156–160.CrossRefPubMedGoogle Scholar
  35. 35.
    Semenova, T.P., Anoshkina, I.A., Kolaeva, S.G., and Solomonov, N.G., Dokl. Akad. Nauk, 2000, vol. 373, no. 2, pp. 260–262.Google Scholar
  36. 36.
    Semenova, T.P., Zh. Vyssh. Nervn. Deyat., 2004, vol. 54, no. 2, pp. 174–182.Google Scholar
  37. 37.
    Semenova, T.P., Kozlovskaya, M.M., Zuikov, A.V., Kozlovski, I.I., and Andreeva, L.A., Bull. Experim. Biol. and Med., 2005, vol. 140, no. 6, pp. 705–707.CrossRefGoogle Scholar
  38. 38.
    Semenova, T.P. and Zakharova, N.M., Neurosci. and Behav. Physiol., 2015, vol. 45, no. 6, pp. 658–664.CrossRefGoogle Scholar
  39. 39.
    Onufriev, M.V., Semenova, T.P., Kolaeva, S.G., Moiseeva, Yu.V., Egorova, L.K., and Gulyaeva, N.V., Neirokhimiya, 2002, vol. 19, no. 4, pp. 264–268.Google Scholar
  40. 40.
    Semenova, T.P., Onufriev, M.V., Anoshkina, I.A., Moiseeva, Yu.V., Kolaeva, S.G., Gulyaeva, N.V., and Fesenko, E.E., Dokl. Akad. Nauk, 2004, vol. 398, no. 4, pp. 571–573.Google Scholar
  41. 41.
    Semenova, T.P., Anoshkina, I.A., Dolgacheva, L.P., Abzhalelov, B.B., and Kolaeva, S.G., Ross. Fiziol. Zh. im. I.M. Sechenova, 2000, vol. 86, no. 9, pp. 1188–1194.PubMedGoogle Scholar
  42. 42.
    Semenova, T.P., Spiridonova, L.A., and Zakharova, N.M., Ross. Fiziol. Zh. im. I.M. Sechenova, 2014, vol. 100, no. 9, pp. 1068–1076.PubMedGoogle Scholar
  43. 43.
    Semenova, T.P., Anoshkina, I.A., Khomut, B.H., and Kolaeva, S.G., Behav. Processes, 2001, vol. 56, pp. 195–20.CrossRefPubMedGoogle Scholar
  44. 44.
    Mihailovich, L.J., Petrovich-Minic, B., Protic, S., and Divac, I., Nature, 1968, vol. 218, pp. 191–192.CrossRefGoogle Scholar
  45. 45.
    Millessi, T., Prossinger, H., Dittami, J.P., and Fieder, M., J. Biol. Rhythms, 2001, vol. 16, no. 3, pp. 264–271.CrossRefGoogle Scholar
  46. 46.
    Thompson, A.B., Montigio, P.-O., and Humphries, M.M., Physiology and Behavior, 2013, vols. 110–111, pp. 115–121.CrossRefPubMedGoogle Scholar
  47. 47.
    Mateo, J.M. and Johnston, R.E., Anim. Behav., 2000, vol. 59, pp. 491–499.CrossRefPubMedGoogle Scholar
  48. 48.
    Zhao, H., Bucci, D.J., Weltzin, M., and Drew, K.L., Behav. Brain Res., 2004, vol. 151, nos. 1–2, pp. 219–224.CrossRefPubMedGoogle Scholar
  49. 49.
    Weltzin, M.M., Zhao, H.W., Drew, K.L., and Bucci, D.J., Behav. Brain Res., 2006, vol. 167, pp. 128–133.CrossRefPubMedGoogle Scholar
  50. 50.
    Clemens, L.E., Heldmaier, G., and Exner, C., Phys. Behav., 2009, vol. 98, no. 1, pp. 78–84.CrossRefGoogle Scholar
  51. 51.
    Frith, J.E., Porrello, E.R., and Cooper-White, J.J., Stem Cells Transl. Med., 2014, vol. 3, no. 8, pp. 969–976.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ong, S.G., Lee, W.H., Kodo, K., and Wu, J.C., Adv. Drug Deliv. Rev., 2015, vol. 88, pp. 3–15.CrossRefPubMedGoogle Scholar
  53. 53.
    Altman, J., J. Comp. Neurol., 1969, vol. 137, no. 4, pp. 433–457.CrossRefPubMedGoogle Scholar
  54. 54.
    Lledo, P.M., Nat. Rev. Neurosci., 2006, vol. 7, no. 3, pp. 179–93.CrossRefPubMedGoogle Scholar
  55. 55.
    Viktorov, I.V., Izvestiya RAN, Ser. Biol., 2001, no. 6, pp. 646–655.Google Scholar
  56. 56.
    Deng, W., J. Neurosci., 2009, vol. 29, no. 43, pp. 13532–13542.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Lucassen, P.J., EurNeuropsychopharmacol., 2010, vol. 20, no. 1, pp. 1–17.CrossRefGoogle Scholar
  58. 58.
    Shtark, M.B., Mozg zimnespyashchikh (The Brain in Hibernation), Novosibirsk: Nauka, 1970.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • M. V. Onufriev
    • 1
    Email author
  • T. P. Semenova
    • 2
  • E. P. Volkova
    • 1
  • M. A. Sergun’kina
    • 1
  • A. A. Yakovlev
    • 1
  • N. M. Zakharova
    • 2
  • N. V. Gulyaeva
    • 1
  1. 1.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Cellular BiophysicsRussian Academy of SciencesPushchinoRussia

Personalised recommendations