Neurochemical Journal

, Volume 10, Issue 2, pp 98–105 | Cite as

Seasonal changes in actin and Cdk5 expression in different brain regions of the Yakut ground squirrel (Spermophilus undulatus)

  • M. V. OnufrievEmail author
  • T. P. Semenova
  • E. P. Volkova
  • M. A. Sergun’kina
  • A. A. Yakovlev
  • N. M. Zakharova
  • N. V. Gulyaeva
Experimental Articles


In this study we described the seasonal profile of the actin and Cdk5 levels in different brain structures of Yakut long-tailed ground squirrels (Spermophilus undulatus) during their annual cycle. Experiments were performed with adult Yakut ground squirrels, both male and female, weighing 600–800 g (n = 35) at different stages of their annual cycle, viz., in the summer, the period of the maximum activity of the animals; in the autumn, during preparation for hibernation; in the winter, during hibernation; in the spring, at the exit of the animals from the hibernating state. Our results indicate that actin mRNA increased by 1.9 times (p = 0.0001) in the frontal cortex, the hippocampus, and the caudal brainstem during hibernation. In the brainstem, a significant increase in actin mRNA started to develop in autumn, in normothermic animals at the stage of their preparation for hibernation (p = 0.0078). At the exit of animals from the torpid state, the level of hippocampal expression decreased significantly by 4.5 times; in the cortex and brainstem it decreased to the level of summer animals. In contrast, the dynamics in the cerebellum had opposite direction: actin mRNA level decreased significantly during the preparation for hibernation (p = 0.037), remained low in torpid animals (p = 0.051), and increased after awakening. The changes in the total protein level were observed only in the hippocampus, along with increased expression of Cdk5 mRNA during hibernation (p = 0.003) and at the exit from it (p = 0.001). Detected differences in the seasonal metabolic profile of cytoskeleton proteins in the hippocampus of Yakut long-tailed ground squirrels support a substantial structural plasticity of this brain structure during the hibernation cycle that was described previously in morphological and biochemical studies.


hibernation Yakut long-tailed ground squirrels seasonal changes actin mRNA expression Cdk5 mRNA expression total protein level 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Strumwasser, F., Am. J. Phys., 1959, vol. 196, pp. 23–30.Google Scholar
  2. 2.
    Lyman, C.P. and Chatfield, P.O., Phys. Rev., 1955, vol. 35, no. 2, pp. 403–425.Google Scholar
  3. 3.
    Shtark, M.B., Fiziol. Zhurn. SSSR., 1963, vol. 47, no. 8, pp. 943–951. (In Russian).Google Scholar
  4. 4.
    Belousov, A.B., Uspekhi Physiol. Nauk., 1993, vol. 24, no. 2, pp. 109–127. (In Russian).Google Scholar
  5. 5.
    Popov, V.I. and Bocharova, L.S., Neurosci., 1992, vol. 48, no. 1, pp. 53–62.CrossRefGoogle Scholar
  6. 6.
    Popov, V.I., Bocharova, L.S., and Bragin, A.G., Neurosci., 1992, vol. 48, no. 1, pp. 45–51.CrossRefGoogle Scholar
  7. 7.
    Magarin, A.M., McEwen, B.S., Saboureau, M., and Pevet, P., PNAS, 2006, vol. 103, no. 49, pp. 18775–18780.CrossRefGoogle Scholar
  8. 8.
    Popov, V.I., Medvedev, N.I., Patrushev, I.V., Ignat’ev, D.A., Morenkov, E.D., and Stewart, M.G., Neurosci., 2007, vol. 149, pp. 549–560.CrossRefGoogle Scholar
  9. 9.
    Juraska, J.M., Fitch, J.M., and Washburne, L., Brain Res., 1989, vol. 479, pp. 115–119.CrossRefPubMedGoogle Scholar
  10. 10.
    Ohe, Ch.G., Darian-Smith, C., Garner, C.C., and Heller, H.C., J. Neurosci., 2006, vol. 26, no. 41, pp. 10590–10598.CrossRefPubMedGoogle Scholar
  11. 11.
    Ruediger, J., van der Zee, E.A., Strijkstra, A.M., Aschoff, A., Daan, S., and Hut, R.A., Synapse, 2007, vol. 61, pp. 343–352.CrossRefPubMedGoogle Scholar
  12. 12.
    Ohe, Ch.G., Garner, C., Darian-Smith, C., and Heller, H.C., J. Neurosci., 2007, vol. 27, no. 1, pp. 84–92.CrossRefPubMedGoogle Scholar
  13. 13.
    Frerichs, K.U., Smith, C.B., Brenner, M., DeGracia, D.J., Krause, G.S., Marrone, L., Dever, T.E., and Hallenbeck, J.M., Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 14511–14516.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Stieler, J.T., Bullmann, T., Kohl, F., Barnes, B.M., and Arendt, T., J. Neurol. Transm., 2009, vol. 116, pp. 345–350.CrossRefGoogle Scholar
  15. 15.
    Epperson, L.E, Rose, J.C., Russell, R.L., Nikrad, M.P., Carey, H.V., and Martin, S.L., J. Comp. Phys. B, 2010, vol. 180, no. 4, pp. 599–617.CrossRefGoogle Scholar
  16. 16.
    Demin, N.N., Shortanova, T.Kh., and Emirbekov, E.Z. Neuroshemistry of Mammalian Hibernation, Leningrad: Nauka, 1988. (In Russian).Google Scholar
  17. 17.
    Dhariwala, F.A. and Rajadhyaksha, M.S., Cell Mol. Neurobiol., 2008, vol. 28, pp. 351–369.CrossRefPubMedGoogle Scholar
  18. 18.
    Lagace, D.C., Benavides, D.R., Kansy, J.W., Mapelli, M., Greengard, P., Bibb, J.A., and Eisch, A.J., PNAS, 2008, vol. 105, no. 47, pp. 18567–18571.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Srere, H.K., Wang, L.C.H., and Martin, S.L., Proc. Natl. Acad. Sci. USA, 1992, vol. 89, pp. 7119–7123.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Tamura, Y., Monden, M., Shintani, M., Kawai, A., and Shiomi, H., Brain. Res., 2006, vol. 1108, no. 1, pp. 107–116.CrossRefPubMedGoogle Scholar
  21. 21.
    Tamura, Y., Shintani, M., Inoue, H., Monden, M., and Shiomi, H., Brain Res., 2012, vol. 1448, pp. 63–70.CrossRefPubMedGoogle Scholar
  22. 22.
    Okada, J., Tanimo, M., and Yoneda, K., Neurosci. Lett., 1988, vol. 84, no. 3, pp. 277–282.CrossRefPubMedGoogle Scholar
  23. 23.
    Sartorius, C.J. and Berger, M.S., Technic. J. Neurosurger., 1998, vol. 88, no. 2, pp. 349–351.CrossRefGoogle Scholar
  24. 24.
    Drew, K.L., Free Radic. Biol. Med., 2001, vol. 31, pp. 563–573.CrossRefPubMedGoogle Scholar
  25. 25.
    Drew, K.L., Buck, C.L., Barnes, B.M., Christian, S.L., Rasley, B.T., and Harris, M.B., J. Neurochem., 2007, vol. 102, no. 6, pp. 1713–1726.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Karkar, K.M., Garcia, P.A., Bateman, L.M., Smyth, M.D., and Barbaro, N.M., Epilepsia, 2002, vol. 43, pp. 932–935.CrossRefPubMedGoogle Scholar
  27. 27.
    Colbourne, F., Grooms, S.Y., Zukin, R.S., Buchan, A.M., and Bennett, M.V., Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 2906–2910.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    De Georgia, M.A., Krieger, D.W., Abou-Chebl, A., Devlin, T.G., Jauss, M., Davis, S.M., Koroshetz, W.J., Rordorf, G., and Warach, S., Neurology, 2004, vol. 63, pp. 312–317.CrossRefPubMedGoogle Scholar
  29. 29.
    Dave, K.R., Christian, S.L., Perez-Pinzon, M.A., and Drew, K.L., Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2012, vol. 162, nos. 1–3, pp. 1–9.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bogren, L.K., Olson, J.M., Carpluk, J., Moore, J.M., and Drew, K.L., PLoS One, 2014, vol. 9, no. 4, p. e94225.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Frerichs, K.U., Kennedy, C., Sokoloff, L., and Hallenbeck, J.M., J. Cereb. Blood Flou Metab., 1994, vol. 14, no. 2, pp. 193–205.CrossRefGoogle Scholar
  32. 32.
    Zhou, F., Zhu, X., Castellani, R.J., Stimmelmayr, R., Perry, G., Smith, M.A., and Drew, K.L., Amer. J. Pathol., 2001, vol. 158, no. 6, pp. 2145–2152.CrossRefGoogle Scholar
  33. 33.
    Nathaniel, T.I., Int. J. Stroke, 2008, vol. 3, pp. 98–104.CrossRefPubMedGoogle Scholar
  34. 34.
    Brown, S.A., Govindaswami, M., Bishop, P.D., Kindy, M.S., and Oeltgen, P.R., Hibernating Woodchuck Plasma and Plasma Fractions Provide Ischaemic Neuroprotection. Hipometabolism in Animals. Hibernayion, Torpor and Cryobiology. Lovegrove, B.G. and McKechnie, A.E., Eds., Pietermaritzburg: Interpak Books, 2008, vol. 1, pp. 37–48.Google Scholar
  35. 35.
    Thierry, A.M., Javoy, F., and Glovinski, J., J. Pharmacol. Exp. Ther., 1968, vol. 163, no. 1, pp. 163–167.Google Scholar
  36. 36.
    Bradford, M.M., Analyt. Biochem., 1976, vol. 72, pp. 248–254.CrossRefPubMedGoogle Scholar
  37. 37.
    O’Hara, B.F., Watson, F.L., Srere, H.K., Kumar, H., Wiler, S.W., Welch, S.K., Bitting, L., Heller, H.C., and Kilduff, T.S., J. Neurosci., 1999, vol. 19, no. 10, pp. 3781–3790.PubMedGoogle Scholar
  38. 38.
    Popov, V.I., Deev, A.A., Klimenko, O.A., Kraev, I.V., Kuz’minykh, S.B., Medvedev, N.I., Patrushev, I.V., Popov, R.V., Rogachevskii, V.V., Khutsiyan, S.S., Stewart, M.G., and Fesenko, E.E., Neuroscience and Behavioral Physiology, 2005, vol. 35, no. 4, pp. 333–342.CrossRefPubMedGoogle Scholar
  39. 39.
    Onufriev, M.V., Semenova, T.P., Kolaeva, S.G., Moiseeva, Ju.V., Egorova, L.K., and Gulyaeva, N.V., Neirokhimiya, 2002, vol. 19, no. 4, pp. 264–268. (In Russian).Google Scholar
  40. 40.
    Semenova, T.P., Anoshkina, I.A., Dolgacheva, L.P., Abzhalelov, B.A., and Kolaeva, S.G., Ross. Fiziol. Zh. im. I.M. Sechenova, 2000, vol. 86, no. 9, pp. 1188–1194. (In Russian).PubMedGoogle Scholar
  41. 41.
    Naumenko, V.S., Tkachev, S.E., Kulikov, A.V., Semenova, T.P., Amerkhanov, Z.G., Smirnova, N.P., and Popova, N.K., Genes. Brain and Behavior, 2008, vol. 7, pp. 300–305.CrossRefGoogle Scholar
  42. 42.
    Vinogradova, O.S., Hippocampus, 2001, vol. 11, no. 5, pp. 578–598.CrossRefPubMedGoogle Scholar
  43. 43.
    Ignat'ev, D.A., Gordon, R.Ya., Vorob’ev, V.V., and Rogachevskii, V.V., Biofizika, 2005, vol. 50, no. 1, pp. 140–151. (In Russian).PubMedGoogle Scholar
  44. 44.
    Drew, K.L., Osborn, P.G., Frerichs, K.U., Hu, Y., Koren, R.E., Hallenbeck, J.M., and Rice, M.E., Brain. Res., 1999, vol. 851, pp. 1–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Ben-Ari, Y., Epilepsia, 2001, vol. 42, no. 3, pp. 5–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Jessberger, S., Zhao, C., Toni, N., Clemenson, G.D., Jr., Li, Y., and Gage, F.H., J. Neuroscience, 2007, vol. 27, no. 35, pp. 9400–9407.CrossRefPubMedGoogle Scholar
  47. 47.
    Knight, J.E., Narus, E.N., Martin, S.L., Jacobson, A., Barnes, B.M., and Boyer, B.B., Molec. and Cell. Biol., 2000, vol. 20, no. 17, pp. 6374–6379.CrossRefGoogle Scholar
  48. 48.
    Jun Yan, Barnes, B.M., Kohl, F., and Marr, T.G., Physiol. Genomics., 2008, vol. 32. 170–181.Google Scholar
  49. 49.
    Storey, K.B. and Storey, J.M., Adv. Clin. Chem., 2010, vol. 52, pp. 77–108.CrossRefPubMedGoogle Scholar
  50. 50.
    Semenova, T.P., Anoshkina, I.A., Khomut, B.H., and Kolaeva, S.G., Behav. Processes, 2001, vol. 56, no. 1, pp. 195–200.CrossRefPubMedGoogle Scholar
  51. 51.
    Semenova, T.P., Kozlovskaya, M.M., Zuikov, A.V., Kozlovski, I.I., and Andreeva, L.A., Bull. Experim. Biol. and Med., 2005, vol. 140, no. 6, pp. 705–707.CrossRefGoogle Scholar
  52. 52.
    Semenova, T.P., Spiridonova, L.A., and Zakharova, N.M., Ross. Fiziol. Zh. im. I.M. Sechenova, 2014, vol. 100, no. 9, pp. 1068–1076. (In Russian).PubMedGoogle Scholar
  53. 53.
    Semenova, T.P. and Zakharova, N.M., Neurosci. and Behav. Physiol., 2015, vol. 45, no. 6, pp. 658–664.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • M. V. Onufriev
    • 1
    Email author
  • T. P. Semenova
    • 2
  • E. P. Volkova
    • 1
  • M. A. Sergun’kina
    • 1
  • A. A. Yakovlev
    • 1
  • N. M. Zakharova
    • 2
  • N. V. Gulyaeva
    • 1
  1. 1.Institute of Higher Nervous Activity and Neurophysiology Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Cellular BiophysicsRussian Academy of SciencesPushchinoRussia

Personalised recommendations