Skip to main content
Log in

The kinetic and thermodynamic characteristics of lactate dehydrogenase in the rat brain during hypothermia

  • Experimental Articles
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

We studied the activity and kinetic and thermodynamic characteristics of LDH in the rat brain during short-term and long-term (3 h) moderate (30°C) hypothermia and short-term deep (20°C) hypothermia. We found that a decrease in the body temperature of rats to 30°C resulted in an increase in the LDH activity and a shift in the optimum point on the plot of the concentration dependence in the direction of higher concentrations of pyruvate. Analysis of the kinetic characteristics of the enzyme during moderate hypothermia points to a pronounced increase in V max and K i, which was associated with an insignificant decrease in K m; this increases the efficacy of enzymatic catalysis and decreases the extent of substrate inhibition. However, the character of the temperature dependence of LDH activity also changed, which was determined by a decrease in the effective energy of activation and enthalpy of activation. The above effects of shortterm moderate hypothermia during its prolongation became more pronounced. However, after deeper hypothermia, the LDH activity, character of its concentration and temperature dependence and kinetic and thermodynamic characteristics considerably did not differ from the control characteristics. The possible mechanisms and biological sense of the found changes in the kinetic and thermodynamic characteristics of LDH in the rat brain at low body temperatures are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hochachka, P. and Somero, G., Biochemical Adaptation, Oxford, 2002.

    Google Scholar 

  2. Fields, P.A., Kim, Y.-S., Carpenter, J.F., and Somero, G.N., J. Exp. Biol., 2002, vol. 205, pp. 1293–1303.

    CAS  PubMed  Google Scholar 

  3. Ozernyuk, N.D., Temperaturnye adaptatsii (Temperature Adaptations), Moscow: MGU, 2000.

    Google Scholar 

  4. Polderman, K.H. and Herold, I., Crit. Care. Med., 2009, vol. 37, pp. 1101–1120.

    Article  PubMed  Google Scholar 

  5. Tang, X.N. and Yenari, M.A., Ageing Res. Rev., 2010, vol. 9, no. 1, pp. 61–68.

    Article  PubMed  Google Scholar 

  6. Froehler, M.T. and Ovbiagele, B., Expert. Rev. Cardiovasc. Ther., 2010, vol. 8, no. 4, pp. 593–603.

    Article  CAS  PubMed  Google Scholar 

  7. Dietrich, W.D. and Bramlett, H.M., Neurotherapeutics, 2010, vol. 7, no. 1, pp. 43–50.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Alva, N., Palomeque, J., and Carbonell, T., Oxidative Medicine and Cellular Longevity, 2013, vol. 2013, p.10.

    Article  Google Scholar 

  9. Emirbekov, E.Z. and Klichkhanov, N.K., Svobodnoradikal’nye protsessy i sostoyanie membran pri gipotermii (Free Radical Processes and State of Membranes during Hypothermia), Rostov-on-Don: YuFU, 2011.

    Google Scholar 

  10. Rabadanova, Z.G. and Meilanov, I.S., Vestnik DGU, 2011, no. 1, pp. 113–119.

    Google Scholar 

  11. Klichkhanov, N.K., Khalilov, R.A., and Meilanov, I.S., Ross. Fiziol. Zhurn., 2007, vol. 93, no. 3, pp. 248–254.

    CAS  Google Scholar 

  12. Zimin, Yu.V., Syatkin, S.P., and Berezov, T.T., Vopr. Med. Khim., 2001, vol. 47, no. 3, pp. 279–287.

    CAS  PubMed  Google Scholar 

  13. L’vova, S.P. and Meilanov, I.S., Biofizika, 2000, vol. 45, no. 2, pp. 228–231.

    PubMed  Google Scholar 

  14. Khalilov, R.A., Dzhafarova, A.M., and Meilanov, I.S., Izvestiya VUZov Sev.-Kav. Reg. Estestv. nauki, 2011, no. 1, pp. 75–78.

    Google Scholar 

  15. Khalilov, R.A., Dzhafarova, A.M., Dzhabrailova, R.N., and Emirbekov, E.Z., Neirokhimiya, 2014, vol. 31, no. 4, pp. 1–7.

    Google Scholar 

  16. Menard, L., Maughan, D., and Vigoreaux, J., Biology, 2014, vol. 3, pp. 623–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Forlemu, N.Y., Njabon, E.N., Carlson, K.L., Schmidt, E.S., Waingeh, V.F., and Thomasson, K.A, Proteins, 2011, vol. 79, no. 10, pp. 2813–2827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Puchulu-Campanella, E., Chu, H., Anstee, D.J., Galan, J.A., Tao, W.A., and Low, P.S., J. Biol. Chem., 2013, vol. 288, pp. 848–858.

    Article  CAS  PubMed  Google Scholar 

  19. Shearwin, K., Nanhua, C., and Masters, C., Biochem. Int., 1990, vol. 21, no. 1, pp. 53–60.

    CAS  PubMed  Google Scholar 

  20. Vazquez, A., de Menezes, M.A., Barabasi, A.-L., and Oltvai, Z.N., PLoS Computational Biology, 2008, vol. 4, pp. 1–6.

    Article  Google Scholar 

  21. Van Eunenn, K. and Bakker, B.M., Perspectives in Science, 2014, no. 1, pp. 126–130.

    Article  Google Scholar 

  22. Lowry, D.H., Rosembrough, H.J., and Farr, A.L., J. Biol. Chem., 1951, vol. 193, pp. 265–275.

    CAS  PubMed  Google Scholar 

  23. Zakhartsev, M., Johansen, T., Portner, H.O., and Blust, R., The J. Exper. Biology, 2004, vol. 207, pp. 95–112.

    Article  CAS  Google Scholar 

  24. Erecinska, M., Thoresen, M., and Silver, I.A., J. Cereb. Blood Flow Metab., 2003, vol. 23, pp. 513–530.

    Article  CAS  PubMed  Google Scholar 

  25. Bretteville, A., Virag, L., Emala, C.W., Maurin, T.O., Marcouiller, F., Julien, C., Petry, F.R., El-Khoury, N.B., Morin, F., Charron, J., and Planel, E., Scientific Reports, 2013, vol. 3, pp. 1–8.

    Google Scholar 

  26. Oda, T., Shimizu, K., Yamaguchi, A., Satoh, K., and Matsumoto, K., Cryobiology, 2012, vol. 65, pp. 104–112.

    Article  CAS  PubMed  Google Scholar 

  27. Princiotta, M.F., Finzi, D., Qian, S.B., Gibbs, J., Schuchmann, S., Buttgereit, F., Bennink, J.R., and Yewdell, J.W., Immunity, 2003, vol. 18, no. 3, pp. 343–354.

    Article  CAS  PubMed  Google Scholar 

  28. Johns, G.C. and Somero, G.N., Mol. Biol. Evol., 2004, vol. 21, no. 2, pp. 314–320.

    Article  CAS  PubMed  Google Scholar 

  29. Meilanov, I.S. and Avshalumov, M.V., Ross. Fiziol. Zhurn., 1997, vol. 83, no. 9, pp. 102–106.

    CAS  Google Scholar 

  30. Webster, K.A., The J. Exper. Biology, 2003, vol. 206, pp. 2911–2922.

    Article  CAS  Google Scholar 

  31. Peng, H.-L., Deng, H., Dyer, R.B., and Callender, R., Biochemistry, 2014, vol. 53, pp. 1849–1857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Khalilov, R.A., Dzhafarova, A.M., and Dzhabrailova, R.N., Vestnik DGU, 2013, no. 6, pp. 114–119.

    Google Scholar 

  33. Slonim, A.D., in Evolyutsiya termoregulyatsii (Evolution of Thermoregulation), Leningrad, 1986, p.76.

    Google Scholar 

  34. Kulinskii, V.I. and Ol’khovskii, I.A., Usp. Sovrem. Biol., 1992, vol. 112, nos. 5–6, pp. 697–714.

    CAS  Google Scholar 

  35. Dzhaber, Mayakhi M.T. and Klichkhanov, N.K., Izvest. Samar. N. Ts. RAN, 2012, vol. 14, no. 5, pp. 273–277.

    Google Scholar 

  36. Volzhina, N.G., Cand. Sci. (Biol.) Dissertation, Makhachkala., 1991.

    Google Scholar 

  37. Chudakov, A.Yu., Isakov, V.D., and Doronin, Yu.G., Ostroe obshchee pereokhlazhdenie v vode (Acute General Overcooling in Water), St. Petersburg: Voennomeditsinskaya akademiya, 1999.

    Google Scholar 

  38. Ames, I.A., Brain Res. Rev., 2000, vol. 34, pp. 42–68.

    Article  CAS  PubMed  Google Scholar 

  39. Liu, L. and Yenari, M.A., Frontiers in Bioscience, 2007, vol. 12, pp. 816–825.

    Article  CAS  PubMed  Google Scholar 

  40. Yenari, M.A. and Han, H.S., Nat. Rev. Neurosci., 2012, vol. 13, no. 4, pp. 267–78.

    CAS  PubMed  Google Scholar 

  41. Van der Worp, H.B., Macleod, M.R., and Kollmar, R., J. Cerebral Blood Flow Metab., 2010, vol. 30, no. 1, pp. 1–15.

    Article  Google Scholar 

  42. Brown, A.M., Baltan, T.S., and Ransom, B.R., Neurochem. Int., 2004, vol. 45, pp. 529–536.

    Article  CAS  PubMed  Google Scholar 

  43. Pierre, K., Magistretti, P.J., and Pellerin, L., J. Cereb. Blood Flow Metab., 2002, vol. 22, pp. 586–595.

    Article  CAS  PubMed  Google Scholar 

  44. Cater, H.L., Chandratheva, A., Benham, C.D., Morrison, B., and Sundstrom, L.E., J. Neurochem., 2003, vol. 87, pp. 1381–1390.

    Article  CAS  PubMed  Google Scholar 

  45. Sotelo-Hitschfeld, T., Niemeyer, M.I., Machler, Ph., Ruminot, I., Lerchundi, R., Wyss, M., Stobart, J., Fernandez-Moncada, I., Valdebenito, R., Garrido-Gerter, P., Contreras-Baeza, Y., Schneider, B.L., Aebischer, P., Lengacher, S., San Martin A., Le Douce, J., Bonvento, Magistretti, P., Sepulveda, F.V., Weber, B., and Barros, L.F, J. Neurosci., 2015, vol. 35, no. 10, pp. 4168–4178.

    Article  CAS  PubMed  Google Scholar 

  46. Tang, F., Lanel, S., Korsak, A., Paton, J.F.R., Gourine, A.V., and Kasparov, S., Nature commun., 2014, vol. 5, pp. 1–16.

    CAS  Google Scholar 

  47. Tseng, Y., Liu, S., Hu, M., Chen, R., Lee, J., and Hwang, P., Frontiers in Zoology, 2014, vol. 11, pp. 2–20.

    Article  Google Scholar 

  48. Calvert, J.V., Cahill, J., and Yamaguchi-Okada, Zhang, J.H., J. Appl. Physiol., 2006, vol. 101, pp. 853–865.

    Article  CAS  PubMed  Google Scholar 

  49. Yamamoto, S. and Storey, K.B., Int. J. Biochem., 1988, vol. 20, pp. 1261–1265.

    Article  CAS  PubMed  Google Scholar 

  50. Dobeli, H. and Schoenenberger, G.A., Cell. Mol. Life Sci., 1983, vol. 39, pp. 281–282.

    Article  CAS  Google Scholar 

  51. Porther, H.O., Comp. Biochem. Physiol., 2002, vol. 132, pp. 739–761.

    Article  Google Scholar 

  52. Place, S.P. and Hofmann, G.E., Am. J. Physiol. Regul. Integr. Comp. Physiol, 2005, vol. 288, pp. 1195–1202.

    Article  Google Scholar 

  53. Xiong, Z.J. and Storey, K.B., Comparative Bioch. and Physiol., 2012, vol. 163, pp. 221–228.

    Article  CAS  Google Scholar 

  54. Shahriari, A., Dawson, N.J., Bell, R.A.V., and Storey, K.B., Enzyme Res., 2013, vol. 2013, pp. 1–7.

    Article  Google Scholar 

  55. Fan, J., Hitosugi, T., Chung, T.-W., Xie, J., Ge, Q., Gu, T.-L., Polakiewicz, R.D., Chen, G.Z., Boggon, T.J., Lonial, S., Khuri, F.R., Kang, S., and Chen, J., Mol. Cell. Bio., 2011, vol. 31, no. 24, pp. 4938–4950.

    Article  CAS  Google Scholar 

  56. Yasykova, M.Y., Petukhov, S.P., and Muronetz, V.I., Biochemistry, 2000, vol. 65, no. 10, pp. 1192–1196.

    CAS  PubMed  Google Scholar 

  57. Bai, J.H., J. Protein Chem., 1997, vol. 16, no. 8, pp. 801–807.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Dzhafarova.

Additional information

Original Russian Text © R.A. Khalilov, A.M. Dzhafarova, R.N. Dzhabrailova, S.I. Khizrieva, 2016, published in Neirokhimiya, 2016, Vol. 33, No. 2, pp. 169–179.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalilov, R.A., Dzhafarova, A.M., Dzhabrailova, R.N. et al. The kinetic and thermodynamic characteristics of lactate dehydrogenase in the rat brain during hypothermia. Neurochem. J. 10, 156–165 (2016). https://doi.org/10.1134/S1819712416020045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712416020045

Keywords

Navigation