The protective effect of (S)-trolox–carnosine on a human neuroblastoma SH-SY5Y cell culture under the impact of heavy metals

Abstract

Evaluation of the dose-dependent effects of heavy metals on the viability of a human neuroblastoma SH-SY5Y cell culture showed that 50% cell death was observed in the presence of 5 × 10–4 М lead, 5 × 10–6 М cadmium, 5 × 10–5 М cobalt, and 10–5 М molybdenum. The presence of these metals led to an increase in the level of reactive oxygen species (ROS) (from 39% to 74% in the cases of lead and cobalt, respectively). We revealed a cytoprotective effect against toxic heavy metals (HMs) of a new synthetic compound, (S)-6-hydroxy-2,5,7,8-tetramethylchroman-2-carbonyl-β-alanyl-L-hystidine. This compound is a combination of carnosine with a water-soluble vitamin E analog, trolox (S-trolox–carnosine, S-TC). S-TC efficiently increased the cell viability in the presence of any of the studied metals, which correlated with a decrease in the proportion of necrotic cells and with efficient inhibition of ROS formation. Trolox also had a large cytoprotective effect under toxic conditions caused by lead, cadmium, and cobalt. The protective activity of carnosine under these conditions was significantly lower than the effects of trolox or trolox–carnosine. In general, these results revealed the greater cytoprotective effect of S-trolox–carnosine in the presence of heavy metals as compared to its precursors, trolox and carnosine.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Brzoska, M.M., Majewska, K., and Kupraszewicz, E. Environ. Toxicol. Pharmacol., 2010, vol. 29. no. 3, pp. 235–245.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Yuan, Y., Jiang C., Xu, H., Sun, Y., and Hu, F., PLoS One, vol. 8, no. 5. doi: 10.1371.

  3. 3.

    Wu, X., Liang, Y., Jin, T., Ye, T., Kong, Q., Wang, Z., Lei, L., Bergdahl, I.A., and Nordberg, G.F., Environ. Res., 2008, vol. 108, pp. 233–238.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Murphy, K.J. and Regan, C.M., J. Neurochem., 1999, vol. 75, pp. 2099–2104.

    Google Scholar 

  5. 5.

    Bressler, J., Kim, K.A., Chakraborti, T., and Goldstein, G., Neurochem. Res., 1999, vol. 24, pp. 595–600.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Inozemtsev, A.N., Bokieva, S.B., Karpukhina, O.V., Gumarkalieva, K.Z., Dokl. Acad. Nauk, vol. 422, no. 5, pp. 700–703.

  7. 7.

    Schrauzer, G.N., Biochemistry of the Essential Ultratrace Elements, Frienden, E., Ed., New York: Plenum Press, 1984, pp. 17–31.

  8. 8.

    Rajagopalan, K.V., Ann. Rev. Nutr, 1988, vol. 8, pp. 401–427.

    CAS  Article  Google Scholar 

  9. 9.

    Garoui, E., Ibtissem, B.A., Driss, D., Awatef, E., Semia, E.C., Boudawara, T., and Zeghal, N., Biol. Trace. Elem. Res., 2013, vol. 154, pp. 387–395.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Lison, D., De Boeck, M., Verougstraete, V., and Kirsch-Volders, M., Occup. Environ. Med., 2001, vol. 58, no. 10, pp. 619–625.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Catalani, S. and Apostoli, P.G., Ital. Med. Lav. Ergon., 2011, vol. 33, Suppl. 3, pp. 57–60.

    CAS  Google Scholar 

  12. 12.

    Venugopal, B. and Luckey, T.D., Chemical Toxicity of Metals and Metalloids, Levandowsky, M., Ed., New York: Plenum Press, 1978, vol. 2, p. 101.

    Google Scholar 

  13. 13.

    Vyskocil, A. and Viau C., J. Appl.Toxicol., 1999, vol. 19, pp. 185–192.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Yedjou, C., Steverson, M., and Tchounwou, P., Metal Ions Biol. Med. 2006, vol. 9, pp. 293–297.

    CAS  Google Scholar 

  15. 15.

    Yeo, J.E. and Kang, S.K., Biochim. Biophys. Acta, 2007, vol. 1772, pp. 1199–1210.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Yedjou, C.G., Milner, J.N., Howard, C.B., Tchounwou, P.B., Int. J. Environ. Res. Public Health., 2010, vol. 7, no. 5, pp. 2008–2017.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Zou, W., Yan, M., Xu, W., Huo, H., Sun, I., Zheng, Z., and Liu, X., J. Neurosci. Res., 2001, vol. 67, no. 6, pp. 646–653.

    Article  Google Scholar 

  18. 18.

    Boldyrev, A.A., Aldini, G., and Derave, W., Physiol. Rev., 2013, vol. 93, pp. 1803–1845.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Lenney, J.F., George, R.P., Weiss, A.M., Kucera, C.M., Chan, P.W., and Rinzler, G.S., Clin. Chim. Acta, 1982, vol. 123, pp. 221–231.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Jackson, M.C., Kucera, C.M., and Lenney, J.F., Clin. Chim. Acta, 1991, vol. 196, pp. 193–205.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Teufel, M., Saudek, V., Ledig, J.P., Bernhardt, A., Boularand, S., Carreau, A., Cairns, N.J., Carter, C., Cowley, D.J., Duverger, D., Ganzhorn, A.J., Guenet, C., Heintzelmann, B., Laucher, V., Sauvage, C., and Smirnova, T., J. Biol. Chem., 2003, vol. 278, pp. 6521–6531.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Bellia, F., Vecchio, G., and Rizzarelli. E., Molecules, 2014, vol. 19, pp. 2299–2329.

    Article  PubMed  Google Scholar 

  23. 23.

    Stvolinsky, S.L., Bulygina, E.R., Fedorova, T.N., Meguro, K., Sato, T., Tyulina, O.V., Abe, H., and Boldyrev, A.A., Cell. Mol. Neurobiol. 2010, vol. 3, pp. 395–404.

    Article  Google Scholar 

  24. 24.

    Stvolinsky, S., Toropova, K., Gordeeva, M., Kazey, V., Sato, T., Meguro, K., and Boldyrev, A., Amino Acids, 2012, vol. 43, pp. 165–170.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Stvolinsky, S., Antipin, M., Meguro, K., Sato, T., Abe, H., and Boldyrev, A., Rejuvenation Res., 2010, vol. 13, no. 4, pp. 453–457.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Gunz, F.W., Nature, 1948, vol. 162, no. 4133, p. 98.

    CAS  PubMed  Google Scholar 

  27. 27.

    Akkuratov, E.E., Lopacheva, O.M., Kruusmägi, M., Lopachev, A.V., Shah, Z.A., Boldyrev, A.A., and Liu, L., Mol. Neurobiol., 2014, no. 8, vol. 52, no. 3, pp. 1726–1734.

    Google Scholar 

  28. 28.

    Valko, M., Morris, H., Cronin, M.T., Curr. Med. Chem., 2005, vol. 12, no. 10, pp. 1161–1120.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Jomova, K. and Valko, M., Toxicology, 2011, vol. 283, nos. 2–3, pp. 65–87.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Ercal, N., Gurer-Orhan, H., and Aykin-Burns, N., Curr. Top. Med. Chem., 2001, vol. 1, no. 6, pp. 529–539.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Stohs, S.J., Bagchi, D., Hassoun, E., and Bagchi, M., J. Environ. Pathol. Toxicol. Oncol., 2001, vol. 20, no. 2, pp. 77–88.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Mendel, R.R., Biofactors, 2009, vol. 35, no. 5, pp. 429–434.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Eun, H.A. and Lee, S.M., Br. J. Pharmacol., 2004, vol. 142, pp. 35–42.

    Article  Google Scholar 

  34. 34.

    Copin, J.C., Li, Y., Reola, L., and Chan, P.H., Brain Res., 1998, vol. 784, nos. 1–2, pp. 25–36.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. I. Kulikova.

Additional information

Original Russian Text © T.N. Fedorova, O.I. Kulikova, S.L. Stvolinsky, V.S. Orlova, 2016, published in Neirokhimiya, 2016, Vol. 33, No. 1, pp. 63–69.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fedorova, T.N., Kulikova, O.I., Stvolinsky, S.L. et al. The protective effect of (S)-trolox–carnosine on a human neuroblastoma SH-SY5Y cell culture under the impact of heavy metals. Neurochem. J. 10, 53–58 (2016). https://doi.org/10.1134/S1819712416010086

Download citation

Keywords

  • lead
  • cadmium
  • cobalt
  • molybdenum
  • heavy metals
  • reactive oxygen species
  • oxidative stress
  • carnosine
  • trolox
  • trolox–carnosine
  • antioxidants