Neurochemical Journal

, Volume 10, Issue 1, pp 53–58 | Cite as

The protective effect of (S)-trolox–carnosine on a human neuroblastoma SH-SY5Y cell culture under the impact of heavy metals

  • T. N. Fedorova
  • O. I. KulikovaEmail author
  • S. L. Stvolinsky
  • V. S. Orlova
Experimental Articles


Evaluation of the dose-dependent effects of heavy metals on the viability of a human neuroblastoma SH-SY5Y cell culture showed that 50% cell death was observed in the presence of 5 × 10–4 М lead, 5 × 10–6 М cadmium, 5 × 10–5 М cobalt, and 10–5 М molybdenum. The presence of these metals led to an increase in the level of reactive oxygen species (ROS) (from 39% to 74% in the cases of lead and cobalt, respectively). We revealed a cytoprotective effect against toxic heavy metals (HMs) of a new synthetic compound, (S)-6-hydroxy-2,5,7,8-tetramethylchroman-2-carbonyl-β-alanyl-L-hystidine. This compound is a combination of carnosine with a water-soluble vitamin E analog, trolox (S-trolox–carnosine, S-TC). S-TC efficiently increased the cell viability in the presence of any of the studied metals, which correlated with a decrease in the proportion of necrotic cells and with efficient inhibition of ROS formation. Trolox also had a large cytoprotective effect under toxic conditions caused by lead, cadmium, and cobalt. The protective activity of carnosine under these conditions was significantly lower than the effects of trolox or trolox–carnosine. In general, these results revealed the greater cytoprotective effect of S-trolox–carnosine in the presence of heavy metals as compared to its precursors, trolox and carnosine.


lead cadmium cobalt molybdenum heavy metals reactive oxygen species oxidative stress carnosine trolox trolox–carnosine antioxidants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brzoska, M.M., Majewska, K., and Kupraszewicz, E. Environ. Toxicol. Pharmacol., 2010, vol. 29. no. 3, pp. 235–245.CrossRefPubMedGoogle Scholar
  2. 2.
    Yuan, Y., Jiang C., Xu, H., Sun, Y., and Hu, F., PLoS One, vol. 8, no. 5. doi: 10.1371.Google Scholar
  3. 3.
    Wu, X., Liang, Y., Jin, T., Ye, T., Kong, Q., Wang, Z., Lei, L., Bergdahl, I.A., and Nordberg, G.F., Environ. Res., 2008, vol. 108, pp. 233–238.CrossRefPubMedGoogle Scholar
  4. 4.
    Murphy, K.J. and Regan, C.M., J. Neurochem., 1999, vol. 75, pp. 2099–2104.Google Scholar
  5. 5.
    Bressler, J., Kim, K.A., Chakraborti, T., and Goldstein, G., Neurochem. Res., 1999, vol. 24, pp. 595–600.CrossRefPubMedGoogle Scholar
  6. 6.
    Inozemtsev, A.N., Bokieva, S.B., Karpukhina, O.V., Gumarkalieva, K.Z., Dokl. Acad. Nauk, vol. 422, no. 5, pp. 700–703.Google Scholar
  7. 7.
    Schrauzer, G.N., Biochemistry of the Essential Ultratrace Elements, Frienden, E., Ed., New York: Plenum Press, 1984, pp. 17–31.Google Scholar
  8. 8.
    Rajagopalan, K.V., Ann. Rev. Nutr, 1988, vol. 8, pp. 401–427.CrossRefGoogle Scholar
  9. 9.
    Garoui, E., Ibtissem, B.A., Driss, D., Awatef, E., Semia, E.C., Boudawara, T., and Zeghal, N., Biol. Trace. Elem. Res., 2013, vol. 154, pp. 387–395.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lison, D., De Boeck, M., Verougstraete, V., and Kirsch-Volders, M., Occup. Environ. Med., 2001, vol. 58, no. 10, pp. 619–625.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Catalani, S. and Apostoli, P.G., Ital. Med. Lav. Ergon., 2011, vol. 33, Suppl. 3, pp. 57–60.Google Scholar
  12. 12.
    Venugopal, B. and Luckey, T.D., Chemical Toxicity of Metals and Metalloids, Levandowsky, M., Ed., New York: Plenum Press, 1978, vol. 2, p. 101.Google Scholar
  13. 13.
    Vyskocil, A. and Viau C., J. Appl.Toxicol., 1999, vol. 19, pp. 185–192.CrossRefPubMedGoogle Scholar
  14. 14.
    Yedjou, C., Steverson, M., and Tchounwou, P., Metal Ions Biol. Med. 2006, vol. 9, pp. 293–297.Google Scholar
  15. 15.
    Yeo, J.E. and Kang, S.K., Biochim. Biophys. Acta, 2007, vol. 1772, pp. 1199–1210.CrossRefPubMedGoogle Scholar
  16. 16.
    Yedjou, C.G., Milner, J.N., Howard, C.B., Tchounwou, P.B., Int. J. Environ. Res. Public Health., 2010, vol. 7, no. 5, pp. 2008–2017.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zou, W., Yan, M., Xu, W., Huo, H., Sun, I., Zheng, Z., and Liu, X., J. Neurosci. Res., 2001, vol. 67, no. 6, pp. 646–653.CrossRefGoogle Scholar
  18. 18.
    Boldyrev, A.A., Aldini, G., and Derave, W., Physiol. Rev., 2013, vol. 93, pp. 1803–1845.CrossRefPubMedGoogle Scholar
  19. 19.
    Lenney, J.F., George, R.P., Weiss, A.M., Kucera, C.M., Chan, P.W., and Rinzler, G.S., Clin. Chim. Acta, 1982, vol. 123, pp. 221–231.CrossRefPubMedGoogle Scholar
  20. 20.
    Jackson, M.C., Kucera, C.M., and Lenney, J.F., Clin. Chim. Acta, 1991, vol. 196, pp. 193–205.CrossRefPubMedGoogle Scholar
  21. 21.
    Teufel, M., Saudek, V., Ledig, J.P., Bernhardt, A., Boularand, S., Carreau, A., Cairns, N.J., Carter, C., Cowley, D.J., Duverger, D., Ganzhorn, A.J., Guenet, C., Heintzelmann, B., Laucher, V., Sauvage, C., and Smirnova, T., J. Biol. Chem., 2003, vol. 278, pp. 6521–6531.CrossRefPubMedGoogle Scholar
  22. 22.
    Bellia, F., Vecchio, G., and Rizzarelli. E., Molecules, 2014, vol. 19, pp. 2299–2329.CrossRefPubMedGoogle Scholar
  23. 23.
    Stvolinsky, S.L., Bulygina, E.R., Fedorova, T.N., Meguro, K., Sato, T., Tyulina, O.V., Abe, H., and Boldyrev, A.A., Cell. Mol. Neurobiol. 2010, vol. 3, pp. 395–404.CrossRefGoogle Scholar
  24. 24.
    Stvolinsky, S., Toropova, K., Gordeeva, M., Kazey, V., Sato, T., Meguro, K., and Boldyrev, A., Amino Acids, 2012, vol. 43, pp. 165–170.CrossRefPubMedGoogle Scholar
  25. 25.
    Stvolinsky, S., Antipin, M., Meguro, K., Sato, T., Abe, H., and Boldyrev, A., Rejuvenation Res., 2010, vol. 13, no. 4, pp. 453–457.CrossRefPubMedGoogle Scholar
  26. 26.
    Gunz, F.W., Nature, 1948, vol. 162, no. 4133, p. 98.PubMedGoogle Scholar
  27. 27.
    Akkuratov, E.E., Lopacheva, O.M., Kruusmägi, M., Lopachev, A.V., Shah, Z.A., Boldyrev, A.A., and Liu, L., Mol. Neurobiol., 2014, no. 8, vol. 52, no. 3, pp. 1726–1734.Google Scholar
  28. 28.
    Valko, M., Morris, H., Cronin, M.T., Curr. Med. Chem., 2005, vol. 12, no. 10, pp. 1161–1120.CrossRefPubMedGoogle Scholar
  29. 29.
    Jomova, K. and Valko, M., Toxicology, 2011, vol. 283, nos. 2–3, pp. 65–87.CrossRefPubMedGoogle Scholar
  30. 30.
    Ercal, N., Gurer-Orhan, H., and Aykin-Burns, N., Curr. Top. Med. Chem., 2001, vol. 1, no. 6, pp. 529–539.CrossRefPubMedGoogle Scholar
  31. 31.
    Stohs, S.J., Bagchi, D., Hassoun, E., and Bagchi, M., J. Environ. Pathol. Toxicol. Oncol., 2001, vol. 20, no. 2, pp. 77–88.CrossRefPubMedGoogle Scholar
  32. 32.
    Mendel, R.R., Biofactors, 2009, vol. 35, no. 5, pp. 429–434.CrossRefPubMedGoogle Scholar
  33. 33.
    Eun, H.A. and Lee, S.M., Br. J. Pharmacol., 2004, vol. 142, pp. 35–42.CrossRefGoogle Scholar
  34. 34.
    Copin, J.C., Li, Y., Reola, L., and Chan, P.H., Brain Res., 1998, vol. 784, nos. 1–2, pp. 25–36.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • T. N. Fedorova
    • 1
  • O. I. Kulikova
    • 1
    • 2
    Email author
  • S. L. Stvolinsky
    • 1
  • V. S. Orlova
    • 2
  1. 1.Research Center of NeurologyMoscowRussia
  2. 2.Peoples’ Friendship University of RussiaMoscowRussia

Personalised recommendations