Skip to main content
Log in

The reasons for the preferable use of A2A receptor antagonists for improvement of locomotor activity and learning

  • Theoretical Articles
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

Previously, we hypothesized that dopamine, as well as antagonists of muscarinic and adenosine receptors, enhances locomotor activity due to modulation of the efficacy of cortical inputs to striatal spiny cells and synergistic disinhibition of neurons of the thalamus and cortex via the direct and indirect pathways in the basal ganglia [Silkis, 2001]. It was shown that the occurrence of a pause in the responses of cholinergic interneurons of the striatum to sensory stimuli promotes this disinhibition due to weakening of the activation of muscarinic receptors on spiny cells. We proposed a hypothetical mechanism for the appearance of this pause, which includes afferent inhibition and activation of D2 receptors [Silkis, 2004]. Current studies support this mechanism. In this study, we propose that a decrease in the activity of cholinergic neurons results in the enhancement of the excitation of spiny cells by cortical afferents due to weakening of their inhibition by inhibitory striatal interneurons that express nicotinic receptors. We put forward a hypothesis that the use of antagonists of A2A receptors is preferable for the improvement of locomotor activity, treatment of Parkinson’s disease, learning, and the choice of actions that results in better reinforcement because only these antagonists promote the occurrence of a pause in the responses to cholinergic interneurons and a decrease in their activity. Due to the same reason the treatment of mental diseases by antagonists of D2 receptors should additionally include antagonists of A2A receptors. Although antagonists of A1 receptors promote the disinhibition of neurons of the thalamus and cortex via the direct pathway in the basal ganglia, their use is undesirable because it may lead to an increase in the activity of cholinergic interneurons and prevent a pause in their responses. In addition, after systemic administration of antagonists of A2A receptors, they should predominantly influence the functioning of the striatum, where they are predominantly located, whereas A1 receptors are widely expressed in the brain and systemic administration of their antagonists may result in unpredictable side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BG:

basal ganglia

PD:

Parkinson’s disease

GPe and GPi:

external and internal parts of the globus pallidus

VTA:

ventral tegmental area

GSIs:

GABAergic striatal interneurons

LTD:

long-term depression

LTP:

long-term potentiation

C-BG-Th-C:

neural network cortex-basal ganglia-thalamus-cortex

NA:

nucleus accumbens

TANs:

tonically active striatal neurons

CSNs:

cholinergic striatal neurons

CN:

caudate nucleus

SNc and SNr:

substantia nigra pars compacta and substantia nigra pars reticulate

SSNs:

spiny striatal neurons

References

  1. Dubrovskaya, N.M. and Zhuravin, I.A., Ros. Fiziol. Zhurn. im. I.M. Sechenova, 1997, vol. 83, nos. 1–2, pp. 83–89.

    CAS  Google Scholar 

  2. Suvorov, N.F. and Shuvaev, V.T., Ros. Fiziol. Zhurn. im. I.M. Sechenova, 2002, vol. 88, no. 7, pp. 1233–1240.

    CAS  Google Scholar 

  3. Shapovalova, K.B, Vyssh. Nervn. Deyat. im. I.P. Pavlova, 1997, vol. 47, no. 2, pp. 393–411.

    CAS  Google Scholar 

  4. Shapovalova, K.B., Dyubkacheva, T.A., Chikhman, V.I., Mysovskii, D.A., and Komkina, Yu.V., Ross. Fiziol. Zhurn. im. I.M. Sechenova, 2002, vol. 88, no. 9, pp. 1146–1160.

    CAS  Google Scholar 

  5. Shuvaev, V.T. and Suvorov, N.F., in Bazal’nye ganglii i povedenie (Basal ganglia and behavior), St. Petersburg: Nauka, 2001.

    Google Scholar 

  6. Shugalev, N.P., Usp. Fiziol. Nauk, 1990, vol. 21, no. 3, pp. 59–78.

    CAS  PubMed  Google Scholar 

  7. Zhou, F.M., Wilson, C.J., and Dani, J.A., J. Neurobiol., 2002, vol. 53, no. 4, pp. 590–605.

    CAS  PubMed  Google Scholar 

  8. Ponterio, G., Tassone, A., Sciamanna, G., Riahi, E., Vanni, V., Bonsi, P., and Pisani, A., Neuropharmacology, 2013, vol. 75, pp. 78–85.

    CAS  PubMed  Google Scholar 

  9. Sciamanna, G., Tassone, A., Mandolesi, G., Puglisi, F., Ponterio, G., Martella, G., Madeo, G., and Bernardi, G., J. Neurosci., 2012, vol. 32, no. 35, pp. 11991–2004.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Shapovalova, B.K., Ross. Fiziol. Zhurn. im. I.M. Sechenova, 1998, vol. 84, no. 7, pp. 589–602.

    CAS  Google Scholar 

  11. Gonzales, K.K., Pare, J.F., Wichmann, T., and Smith, Y., J. Comp. Neurol., 2013, vol. 521, no. 11, pp. 2502–2522.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Schoenbaum, G., Stalnaker, T.A., and Niv, Y., Neuron, 2013, vol. 79, no. 1, pp. 3–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Saka, E., Iadarola, M., Fitzgerald, D.J., and Graybiel, A.M., Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no. 13, pp. 9004–9009.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Sanchez, G., Rodriguez, M.J., Pomata, P., Rela, L., and Murer, M.G., J. Neurosci., 2011, vol. 31, no. 17, pp. 6553–6564.

    CAS  PubMed  Google Scholar 

  15. Schulz, J.M., Oswald, M.J., and Reynolds, J.N.J., J. Neurosci., 2011, vol. 31, no. 31, pp. 11133–11143.

    CAS  PubMed  Google Scholar 

  16. Schulz, J.M. and Reynolds, J.N., Trends Neurosci., 2013, vol. 36, no. 1, pp. 41–50.

    CAS  PubMed  Google Scholar 

  17. Sil’kis, I.G., Zh. Vyssh. Nerv. Deiat. im. I.P. Pavlova, 2004, vol. 54, no. 6, pp. 734–749.

    PubMed  Google Scholar 

  18. Sil’kis, I.G., Usp. Fiziol. Nauk, 2003, vol. 34, no. 4, pp. 54–74.

    PubMed  Google Scholar 

  19. Sil’kis, I.G., Ros. Fiziol. Zhurn. im. I.M. Sechenova, 2004, vol. 90, no. 3, pp. 282–293.

    Google Scholar 

  20. Silkis, I.G., Neurochem. J., 2007, vol. 1, no. 4, pp. 281–287.

    Google Scholar 

  21. Silkis, I.G., Neurochem. J., 2013, vol. 7, no. 4, pp. 270–277.

    CAS  Google Scholar 

  22. Cui, G., Jun, S.B., Jin, X., Pham, M.D., Vogel, S.S., Lovinger, D.M., and Costa, R.M., Nature, 2013, vol. 494, no. 7436, pp. 238–242.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Isomura, Y., Takekawa, T., Harukuni, R., Handa, T., Aizawa, H., Takada, M., and Fukai, T., J. Neurosci., 2013, vol. 33, no. 25, pp. 10209–10220.

    CAS  PubMed  Google Scholar 

  24. Silkis, I., Biosystems, 2001, vol. 59, no. 1, pp. 7–14.

    CAS  PubMed  Google Scholar 

  25. Herrero, M.T., Barcia, C., and Navarro, J.M., Childs Nerv. Syst., 2002, vol. 18, no. 8, pp. 386–404.

    PubMed  Google Scholar 

  26. Takada, M., Brain Nerve, 2012, vol. 64, no. 8, pp. 871–879.

    PubMed  Google Scholar 

  27. Amiez, C., Hadj-Bouziane, F., and Petrides, M., Neuroimage, 2012, vol. 59, no. 4, pp. 3723–3735.

    CAS  PubMed  Google Scholar 

  28. Yan, Z., Flores-Hernandez, J., and Surmeier, D.J., Neuroscience, 2001, vol. 103, no. 4, pp. 1017–1024.

    CAS  PubMed  Google Scholar 

  29. Clements, M.A., Swapna, I., and Morikawa, H., J. Neurosci., 2013, vol. 33, no. 6, pp. 2697–2708.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Planert, H., Szydlowski, S.N., Hjorth, J.J., Grillner, S., and Silberberg, G., J. Neurosci., 2010, vol. 30, no. 9, pp. 3499–3507.

    CAS  PubMed  Google Scholar 

  31. Luo, R., Janssen, M.J., Partridge, J.G., and Vicini, S., J. Physiol., 2013, vol. 591.

  32. English, D.F., Ibanez-Sandoval, O., Stark, E., Tecuapetla, F., Buzsaki, G., Deisseroth, K., Tepper, J.M., and Koos, T., Nat. Neurosci., 2011, vol. 15, no. 1, pp. 123–130.

    PubMed Central  PubMed  Google Scholar 

  33. Silkis, I., Biosystems, 2000, vol. 57, no. 3, pp. 187–196.

    CAS  PubMed  Google Scholar 

  34. Kuroiwa, M., Hamada, M., Hieda, E., Shuto, T., Sotogaku, N., Flajolet, M., Snyder, G.L., Hendrick, J.P., Fienberg, A., and Nishi, A., Neuropharmacology, 2012, vol. 63, no. 7, pp. 1248–1257.

    CAS  PubMed  Google Scholar 

  35. Harsing, L.G.Jr. and Zigmond, M.J., Brain Res. Bull., 1998, vol. 45, no. 6, pp. 607–613.

    CAS  PubMed  Google Scholar 

  36. Shindou, T., Richardson, P.J., Mori, A., Kase, H., and Ichimura, M., Neurosci. Let., 2003, vol. 352, no. 3, pp. 167–170.

    CAS  Google Scholar 

  37. Rosin, D.L., Hettinger, B.D., Lee, A., and Linden, J., Neurology, 2003, vol. 61, no. Suppl. 6, pp. S12–S38.

    CAS  PubMed  Google Scholar 

  38. Peterson, J.D., Goldberg, J.A., and Surmeier, D.J., Neurobiol. D., vol. 45, no. 1, pp. 409–416.

  39. Dimova, R., Vuillet, J., Nieoullon, A., and Kerkerian-Le, GoffL., Neuroscience, 1993, vol. 53, no. 1, pp. 1059–1071.

    CAS  PubMed  Google Scholar 

  40. Lapper, S.R. and Bolam, J.P., Neuroscience, 1992, vol. 51, no. 3, pp. 533–545.

    CAS  PubMed  Google Scholar 

  41. Sidibe, M. and Smith, Y., Neuroscience, 1999, vol. 89, no. 4, pp. 1189–1208.

    CAS  PubMed  Google Scholar 

  42. Thomas, T.M., Smith, Y., Levey, A.I., and Hersch, S.M., Synapse, 2000, vol. 37, no. 4, pp. 252–261.

    CAS  PubMed  Google Scholar 

  43. Ding, J., Peterson, J.D., and Surmeier, D.J., J. Neurosci., 2008, vol. 28, no. 25, pp. 6483–6492.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Sullivan, M.A., Chen, H., and Morikawa, H., J. Neurosci., 2008, vol. 28, no. 35, pp. 8682–8690.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Ramanathan, S., Hanley, J.J., Deniau, J.M., and Bolam, J.P., J. Neurosci., 2002, vol. 22, no. 18, pp. 8158–8169.

    CAS  PubMed  Google Scholar 

  46. Adler, A., Katabi, S., Finkes, I., Prut, Y., and Bergman, H., Front. Syst. Neurosci., 2013, vol. 7, p. 47. doi: 10.3389/fnsys.2013.00047

    PubMed Central  PubMed  Google Scholar 

  47. Brown, M.T., Tan, K.R., O’Connor, E.C., Nikonenko, I., Muller, D., and Luscher, C., Nature, 2012, vol. 492, no. 7429, pp. 452–456.

    CAS  PubMed  Google Scholar 

  48. Creed, M.C., Ntamati, N.R., and Tan, K.R., Front Behav Neurosci., 2014, vol. 8, p. 8. doi: 10.3389/fnbeh.2014.00008

    PubMed Central  PubMed  Google Scholar 

  49. Cepeda, C., Itri, J.N., Flores-Hernandez, J., Hurst, R.S., Calvert, C.R., and Levine, M.S., Eur. J. Neurosci., 2001, vol. 14, no. 10, pp. 1577–1589.

    CAS  PubMed  Google Scholar 

  50. Wilson, C.J., Chang, H.T., and Kitai, S.T., J. Neurosci., 1990, vol. 10, no. 2, pp. 508–519.

    CAS  PubMed  Google Scholar 

  51. Ding, J.B., Guzman, J.N., Peterson, J.D., Goldberg, J.A., and Surmeier, D.J., Neuron, 2010, vol. 67, no. 2, pp. 294–307.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Smith, Y., Raju, D., Nanda, B., Pare, J.F., Galvan, A., and Wichmann, T., Brain Res. Bull., 2009, vol. 78, nos. 2–3, pp. 60–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Matsumoto, N., Minamimoto, T., Graybiel, A.M., and Kimura, M., J. Neurophysiol., 2001, vol. 85, no. 2, pp. 960–976.

    CAS  PubMed  Google Scholar 

  54. Aosaki, T., Kimura, M., and Graybiel, A.M., J. Neurophysiol., 1995, vol. 73, no. 3, pp. 1234–1252.

    CAS  PubMed  Google Scholar 

  55. Apicella, P., Eur. J. Neurosci., 2002, vol. 16, no. 11, pp. 2017–2026.

    PubMed  Google Scholar 

  56. Apicella, P., Legallet, E., and Trouche, E., Neurosci. Let., 1996, vol. 203, no. 3, pp. 147–150.

    CAS  Google Scholar 

  57. Aosaki, T., Tsubokawa, H., Ishida, A., Watanabe, K., Graybiel, A.M., and Kimura, M., J. Neurosci., 1994, vol. 14, no. 6, pp. 3969–3984.

    CAS  PubMed  Google Scholar 

  58. Shimo, Y. and Hikosaka, O., J. Neurosci., 2001, vol. 21, no. 19, pp. 7804–7814.

    CAS  PubMed  Google Scholar 

  59. Goldberg, J.A. and Reynolds, J.N., Neuroscience, 2011, vol. 198, no. 1, pp. 27–43.

    CAS  PubMed  Google Scholar 

  60. Aubry, J.M., Schulz, M.F., Pagliusi, S., Schulz, P., and Kiss, J.Z., Neuroscience, 1993, vol. 53, no. 2, pp. 417–424.

    CAS  PubMed  Google Scholar 

  61. Kenny, P.J., Voren, G., and Johnson, P.M., Curr. Opin. Neurobiol., 2013, vol. 23, no. 4, pp. 535–538.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Yan, Z., Song, W.J., and Surmeier, J., J. Neurophysiol., 1997, vol. 77, no. 2, pp. 1003–1015.

    CAS  PubMed  Google Scholar 

  63. Sil’kis, I.G., Usp. Fiziol. Nauk, 2002, vol. 33, no. 1, pp. 40–56.

    PubMed  Google Scholar 

  64. Suzuki, T., Miura, M., Nishimura, K., and Aosaki, T., J. Neurosci., 2001, vol. 21, no. 17, pp. 6492–6501.

    CAS  PubMed  Google Scholar 

  65. Aosaki, T., Kiuchi, K., and Kawaguchi, Y., J. Neurosci., 1998, vol. 18, no. 14, pp. 5180–5190.

    CAS  PubMed  Google Scholar 

  66. Ajima, A., Yamaguchi, T., and Kato, T., Brain Res., 1990, vol. 518, nos. 1–2, pp. 193–198.

    CAS  PubMed  Google Scholar 

  67. DeBoer, P. and Abercrombie, E.D., J. Pharmacol. Exp. Ther., 1996, vol. 277, no. 1, pp. 75–783.

    Google Scholar 

  68. Kemel, M.L., Perez, S., Godeheu, G., Soubrie, P., and Glowinski, J., J. Neurosci., 2002, vol. 22, no. 5, pp. 1929–1936.

    CAS  PubMed  Google Scholar 

  69. Imperato, A., Obinu, M.C., and Gessa, G.L., J. Neural Transm., 1995, vol. 45, no. Suppl. pp. 91–102.

    CAS  Google Scholar 

  70. Bracci, E., Centonze, D., Bernardi, G., and Calabresi, P., J. Neurophysiol., 2002, vol. 87, no. 4, pp. 2190–2194.

    CAS  PubMed  Google Scholar 

  71. Saka, E., Iadarola, M., Fitzgerald, D.J., and Graybiel, A.M., Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no. 13, pp. 9004–9009.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Watanabe, K. and Kimura, M., J. Neurophysiol., 1998, vol. 79, no. 5, pp. 2568–2580.

    CAS  PubMed  Google Scholar 

  73. Bennett, B.D. and Wilson, C.J., J. Neurosci., 1999, vol. 19, no. 3, pp. 5586–5596.

    CAS  PubMed  Google Scholar 

  74. Silkis, I., Biosystems, 2007, vol. 89, nos. 1–3, pp. 227–235.

    PubMed  Google Scholar 

  75. Comoli, E., Coizet, V., Boyes, J., Bolam, J.P., Canteras, N.S., Quirk, R.H., Overton, P.G., and Redgrave, P., Nat. Neurosci., 2003, vol. 6, no. 9, pp. 974–980.

    CAS  PubMed  Google Scholar 

  76. Dommett, E., Coizet, V., Blaha, C.D., Martindale, J., Lefebvre, V., Walton, N., Mayhew, J.E., Overton, P.G., and Redgrave, P., Science, 2005, vol. 307, no. 5714, pp. 1476–1479.

    CAS  PubMed  Google Scholar 

  77. Okada, K. and Kobayashi, Y., Front. Integr. Neurosci., p. 7.

  78. Preston, Z., Lee, K., Widdowson, L., Freeman, T.C., Dixon, A.K., and Richardson, P.J., Br. J. Pharmacol., 2000, vol. 130, no. 4, pp. 886–890.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Song, W.J., Tkatch, T., and Surmeier, D.J., J. Neurophysiol., 2000, vol. 83, no. 1, pp. 322–332.

    CAS  PubMed  Google Scholar 

  80. Tozzi, A., de Iure, A., Di Filippo, M., Tantucci, M., Costa, C., Borsini, F., Ghiglieri, V., Giampa, C., Fusco, F.R., Picconi, B., and Calabresi, P., J. Neurosci., 2011, vol. 31, no. 5, pp. 1850–1862.

    CAS  PubMed  Google Scholar 

  81. Kirk, I.P. and Richardson, P.J., J. Neurochem., 1994, vol. 62, no. 3, pp. 960–966.

    CAS  PubMed  Google Scholar 

  82. Garcia, N., Priego, M., Obis, T., Santafe, M.M., Tomas, M., Besalduch, N., Lanuza, M.A., and Tomas, J., Eur. J. Neurosci., 2013, vol. 38, no. 2, pp. 2229–2241.

    PubMed  Google Scholar 

  83. Orru, M., Quiroz, C., Guitart, X., and Ferré, S., Neuropharmacology, 2011, vol. 61, nos. 5–6, pp. 967–974.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Randall, P.A., Nunes, E.J., Janniere, S.L., Stopper, C.M., Farrar, A.M., Sager, T.N., Baqi, Y., Hockemeyer, J., Muller, C.E., and Salamone, J.D., Psychopharmacology (Berl.), 2011, vol. 216, no. 2, pp. 173–186.

    CAS  Google Scholar 

  85. Dixon, A.K., Gubitz, A.K., Sirinathsinghji, D.J., Richardson, P.J., and Freeman, T.C., Br. J. Pharmacol., 1996, vol. 118, no. 6, pp. 1461–1468.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Bogenpohl, J.W., Ritter, S.L., Hall, R.A., and Smith, Y., J. Comp. Neurol., 2012, vol. 520, no. 3, pp. 570–589.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Brooks, D.J., Doder, M., Osman, S., Luthra, S.K., Hirani, E., Hume, S., Kase, H., Kilborn, J., Martindill, S., and Mori, A., Synapse, 2008, vol. 62, no. 9, pp. 671–681.

    CAS  PubMed  Google Scholar 

  88. Costenla, A.R., Cunha, R.A., and de Mendonça, A., J. Alzheimers Dis., 2010, vol. 20, no. Suppl. 1, pp. S25–S34.

    CAS  PubMed  Google Scholar 

  89. Fontinha, B.M., Delgado-García, J.M., Madroñal, N., Ribeiro, J.A., Sebastião, A.M., and Gruart, A., Neuropsychopharmacol., 2009, vol. 34, no. 7, pp. 1865–1874.

    CAS  Google Scholar 

  90. Ravel, S., Legallet, E., and Apicella, P., Exp. Brain Res., 1999, vol. 128, no. 4, pp. 531–534.

    CAS  PubMed  Google Scholar 

  91. Kimura, M., Yamada, H., and Matsumoto, N., Brain Dev., 2003, vol. 25, no. Suppl. 1, pp. S20–S23.

    PubMed  Google Scholar 

  92. Pisani, A., Bonsi, P., Picconi, B., Tolu, M., Giacomini, P., and Scarnati, E., Prog. Neuropsychopharmacol. Biol. Psychiatry, 2001, vol. 25, no. 1, pp. 211–230.

    CAS  PubMed  Google Scholar 

  93. Schultz, W., Neuroscientist, 2001, vol. 7, no. 4, pp. 293–302.

    CAS  PubMed  Google Scholar 

  94. Bonsi, P., Florio, T., Capozzo, A., Pisani, A., Calabresi, P., Siracusano, A., and Scarnati, E., Eur. J. Neurosci., 2003, vol. 17, no. 1, pp. 174–178.

    PubMed  Google Scholar 

  95. Raz, A., Feingold, A., Zelanskaya, V., Vaadia, E., and Bergman, H., J. Neurophysiol., 1996, vol. 76, no. 3, pp. 2083–2088.

    CAS  PubMed  Google Scholar 

  96. Morris, G., Arkadir, D., Nevet, A., Vaadia, E., and Bergman, H., Neuron, 2004, vol. 43, no. 1, pp. 133–143.

    CAS  PubMed  Google Scholar 

  97. Soll, L.G., Grady, S.R., Salminen, O., Marks, M.J., and Tapper, A.R., Neuropharmacology, 2013, vol. 73, pp. 19–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Threlfell, S., Lalic, T., Platt, N.J., Jennings, K.A., Deisseroth, K., and Cragg, S.J., Neuron, 2012, vol. 75, no. 1, pp. 58–64.

    CAS  PubMed  Google Scholar 

  99. Ramirez-Zamora, A. and Molho, E., Expert Rev. Neurother., 2014, vol. 14, no. 1, pp. 93–103.

    CAS  PubMed  Google Scholar 

  100. Szabó, N., Kincses, Z.T., and Vécsei, L., Expert Opin. Drug Metab. Toxicol., 2011, vol. 7, no. 4, pp. 441–455.

    PubMed  Google Scholar 

  101. Collins-Praino, L.E., Paul, N.E., Ledgard, F., Podurgiel, S.J., Kovner, R., Baqi, Y., Muller, C.E., Senatus, P.B., and Salamone, J.D., Eur. J. Neurosci., 2013, vol. 38, no. 1, pp. 2183–2191.

    PubMed  Google Scholar 

  102. Pinna, A. and Morelli, M.A., Neurotox. Res., 2014, vol. 25, no. 4, pp. 392–401.

    CAS  PubMed  Google Scholar 

  103. Pardo, M., López-Cruz, L., Valverde, O., Ledent, C., Baqi, Y., Müller, C.E., Salamone, J.D., and Correa, M., Behav. Brain Res., 2013, vol. 247, pp. 217–226.

    CAS  PubMed  Google Scholar 

  104. Jenner, P., Neurology, 2003, vol. 61, no. Suppl. 6, pp. S32–S38.

    CAS  PubMed  Google Scholar 

  105. Mori, A. and Shindou, T., Neurology, 2003, vol. 61, no. Suppl. 6, pp. S44–S48.

    CAS  PubMed  Google Scholar 

  106. Mingote, S., Font, L., Farrar, A.M., Vontell, R., Worden, L.T., Stopper, C.M., Port, R.G., Sink, K.S., Bunce, J.G., Chrobak, J.J., and Salamone, J.D., J. Neurosci., 2008, vol. 28, no. 36, pp. 9037–9046.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Peterson, J.D., Goldberg, J.A., and Surmeier, D.J., Neurobiol. D., vol. 45, no. 1, pp. 409–416.

  108. Mott, A.M., Nunes, E.J., Collins, L.E., Port, R.G., Sink, K.S., Hockemeyer, J., Muller, C.E., and Salamone, J.D., Psychopharmacology (Berl.), 2009, vol. 204, no. 1, pp. 103–112.

    CAS  Google Scholar 

  109. Salamone, J.D., Correa, M., Nunes, E.J., Randall, P.A., and Pardo, M., J. Exp. Anal. Behav., 2012, vol. 97, no. 1, pp. 125–146.

    PubMed Central  PubMed  Google Scholar 

  110. Pardo, M., Lopez-Cruz, L., Valverde, O., Ledent, C., Baqi, Y., Müller, C.E., Salamone, J.D., and Correa, M., Neuropharmacology, 2012, vol. 62, nos. 5–6, pp. 2068–2077.

    CAS  PubMed  Google Scholar 

  111. Farrar, A.M., Segovia, K.N., Randall, P.A., Nunes, E.J., Collins, L.E., Stopper, C.M., Port, R.G., Hockemeyer, J., Muller, C.E., Correa, M., and Salamone, J.D., Neuroscience, 2010, vol. 166, no. 4, pp. 1056–1067.

    CAS  PubMed  Google Scholar 

  112. Salamone, J.D., Farrar, A.M., Font, L., Patel, V., Schlar, D.E., Nunes, E.J., Collins, L.E., and Sager, T.N., Behav. Brain Res., 2009, vol. 201, no. 1, pp. 216–222.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Silkis.

Additional information

Original Russian Text © I.G. Silkis, 2014, published in Neirokhimiya, 2014, Vol. 31, No. 4, pp. 287–299.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silkis, I.G. The reasons for the preferable use of A2A receptor antagonists for improvement of locomotor activity and learning. Neurochem. J. 8, 247–258 (2014). https://doi.org/10.1134/S1819712414040072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712414040072

Keywords

Navigation