Skip to main content

The proline-rich hypothalamic peptide is a modulator of functions of neurotrophins and neuronal activity in amyloid-induced neurodegeneration

Abstract

On a model of neurodegeneration induced by neurotoxic peptide fragment (25–35) of β-amyloid (Aβ), we studied changes in the content of neurotrophins: insulin-like growth factor 1 (IGF-1) and nerve growth factor (NGF) in different brain areas, as well as the thymus, liver, and blood serum of rats under the influence of hypothalamic proline-rich peptide-1 (PRP-1). The effect of PRP-1 on the structural-functional state of the neurons was also studied. We showed that intramuscular injections of synthetic PRP-1 at a dose of 10 μg per 100 g of body weight for the first 9 days after intracerebroventricular administration of Aβ into the lateral brain ventricles of rats resulted in a considerable increase in the concentration of IGF-1 in all investigated brain structures, mainly, in the neocortex, hippocampus, and hypothalamus at 12 week of developing the neurodegeneration. This effect was maintained also after intramuscular administration of PRP-1 at 30 days after Aβ injection (a later date). However, as a result of PRP-1 action at early stages of the process, the tendency to decrease NGF content in the cortex, hippocampus and hypothalamus was observed. Electrophysiological and morphological studies of hippocampal neurons show, that by the 18th week after the beginning of neuro-degeneration, treatment with PRP-1 results in survival and further maintenance of cells, which indicates that PRP-1 has neuroprotective characteristics. We concluded that treatment with PRP-1 at Aβ-induced neuro-degeneration may provide normal functioning of neurons during a relatively long period of time by modulation the levels of neurotrophins both in brain and peripheria.

This is a preview of subscription content, access via your institution.

References

  1. Walsh, D.M., Klyubin, I., and Fadeeva, J.V., Biochem. Soc. Trans., 2002, vol. 30, no. 4, pp. 552–557.

    CAS  PubMed  Article  Google Scholar 

  2. LaFerla, F.M., Green, K.N., and Oddo, S., Nat. Rev. Neurosci, 2007, vol. 8, no. 7, pp. 499–509.

    CAS  PubMed  Article  Google Scholar 

  3. Ondrejcak, T., Klyubin, I., Hu, N.W., Barry, A.E., Cullen, W.K., and Rowa, M.J., Neuromolecular Med, 2010, vol. 12, no. 1, pp. 13–26.

    CAS  PubMed  Article  Google Scholar 

  4. Rivera, E. and Noah Fulmer, A., J. Alzheimers D., vol. 8, no. 3, p. 247–268.

  5. Tuszynski, M.H., Thal, L., Pay, M., Salmon, D.P, U, H.S, Bakay, R., Patel, P., Blesch, A., Vahlsing, H.L., Ho, G., Tong, G., Potkin, S.G., Fallon, J., Hansen, L., Mufson, E.J., Kordower, J.Hu., Gall, C., and Conner, J., Nat. Med, 2005, vol. 11, no. 5, pp. 551–555.

    CAS  PubMed  Article  Google Scholar 

  6. Blesch, A., Uy, H.S., Grill, R.J., Cheng, J.G., Patterson, P.H., and Tuszynski, M.H., J. Neurosci., 1999, vol. 19, no. 9, pp. 3556–3566.

    CAS  PubMed  Google Scholar 

  7. Jones, J.I. and Clemmons, D.R., Endocrinol. Rev, 1995, vol. 16, no. 1, pp. 3–34.

    CAS  Google Scholar 

  8. Trejo, J.L., Carro, E., and Torres-Aleman, I., J. Neurosci., 2001, vol. 21, no. 5, p. 1628–1634.

    CAS  PubMed  Google Scholar 

  9. Carro, E., Trejo, J.L., Nu≠z, A., and Torres-Aleman, I., Mol. Neurobiol, 2003, vol. 27, no. 2, pp. 153–162.

    CAS  PubMed  Article  Google Scholar 

  10. Yuan, J. and Yankner, B.A., Nature, 2000, vol. 407, no. 6805, pp. 802–809.

    CAS  PubMed  Article  Google Scholar 

  11. Carro, E., Trejo, J., Gerber, A., Loetscher, H., Torrado, J., Metzger, F., and Torres-Aleman, I., Neurobiology of Aging, 2005, vol. 27, no. 9, pp. 1250–1257.

    PubMed  Article  Google Scholar 

  12. Carro, E., Trejo, J.L., Gomez-Isla, T., LeRoith, D., Torres-Aleman, I., Nat. Med., 2002, vol. 8, no. 12, pp. 1390–1397.

    CAS  PubMed  Article  Google Scholar 

  13. Trejo, J.L., Carro, E., Garcia-Galloway, E., and Torres-Aleman, I., J. Molec. Med., 2004, vol. 82, no. 3, pp. 156–162.

    CAS  PubMed  Article  Google Scholar 

  14. Mufson, E.J., Conner, J.M., and Kordower, J.H., Neuroreport, 1995, vol. 6, no. 7, pp. 1063–1066.

    CAS  PubMed  Article  Google Scholar 

  15. Fahnestoc, M., Scott, S.A., Jette, N., Weingartne, J.A., and Crutche, K.A., Mol. Brain Res., 1996, vol. 42, no. 1, pp. 175–178.

    Article  Google Scholar 

  16. Galoyan, A., Neurochem. Res, 2000, vol. 25, nos. 9–10, pp. 1343–1355.

    CAS  PubMed  Article  Google Scholar 

  17. Galoyan A., Brain Neurosecretory Cytokines. Immune Response and Neuronal Survival, New York: Kluwer Academic, 2004, pp. 1–188.

    Book  Google Scholar 

  18. Gladkevich, A., Bosker, F., Korf, J., Yenkoyan, K., Vahradyan, H., and Aghajanov, M., Prog. Neuropsychopharmacol. Biol. Psychiatry, 2007, vol. 1, no. 7, pp. 1347–1355.

    Article  Google Scholar 

  19. Yenkoyan, K., Safaryan, K., Chavushyan, V., Meliksetyan, I., Navasardyan, G., Sarkissian, J., Galoyan, A., and Aghajanov, M., Brain Res. Bull., 2011, vol. 86, nos. 3–4, pp. 262–271.

    CAS  PubMed  Article  Google Scholar 

  20. Galoyan, A.A., Sarkissian, J.S., Chavushyan, V.A., Meliksetyan, I.B., Avagyan, Z.E., Poghosyan, M.V., Vahradyan, H.G., Mkrtchian, H.H., and Abrahamyan, D.O., Alzheimers Dement., 2008, vol. 4, no. 5, pp. 332–344.

    CAS  PubMed  Article  Google Scholar 

  21. Galoyan, A.A., Shakhlamov, V.A., Aghajanov, M.I., and Vahradyan, H.G. Neurochem. Res., 2004, vol. 29, no. 7, pp. 1349–1357.

    CAS  PubMed  Article  Google Scholar 

  22. Galoyan, A.A, Sarkissian, J.S, Kipriyan, T.K., Sarkissian, E.J., Chavushyan, E.A., Sulkhanyan, R.M., Meliksetyan, I.B., Abrahamyan, S.S., Griorian, Y.Kh., Avetisyan, Z.A., and Otieva, N.A., Neurochem. Res., 2001, vol. 26, nos. 8–9, pp. 1023–1038.

    CAS  PubMed  Article  Google Scholar 

  23. Paxinos, G. and Watson, Ch., The Rat Brain in Stereotaxic Coordinates: Compact 6th Edition, New York: Academic Press., 2005.

    Google Scholar 

  24. Mauric, T., Lockhar, B., Su, T., and Privat, A., Brain Res., 1996, vol. 731, nos. 1–2, pp. 249–253.

    Article  Google Scholar 

  25. Meliksetyan, I.B., Morfologiya, 2007, vol. 131, no. 6, pp. 77–80.

    CAS  Google Scholar 

  26. Palkovits, M. and Brownstein, M., Appleton and Lange, 1988, p. 223.

    Google Scholar 

  27. Wes, M.J., Coleman, P.D., Flood, D.G., and Troncoso, J.C., Lancet, 1994, vol. 344, no. 8925, pp. 769–772.

    Article  Google Scholar 

  28. Gallagher, M. and Koh, M.T., Current Opinion in Neurobiology, 2011, vol. 21, no. 6, pp. 929–934.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  29. Yenkoyan, K., Safaryan, K., Navasardyan, G., Mkrtchyan, L., and Aghajanov, M. Neurochem. Int., 2009, vol. 54, nos. 5–6, pp. 292–298.

    CAS  PubMed  Article  Google Scholar 

  30. Rosenfeld, R.G., Pham, H., Keller, T., Borchardt, R.T., and Pardridge, W.M. Biochem. Biophys. Res. Commun., 1987, vol. 49, no. 1, pp. 159–166.

    Article  Google Scholar 

  31. Frank, H.J., Pardridg, W.M., Morri, W.L., Rosenfeld, R.G., and Choi, T.B. Diabetes, 1986, vol. 5, no. 6, pp. 654–661.

    Article  Google Scholar 

  32. Tham, A., Nordberg, A., Grissom, F.E., Carlsson-Skwirut, C., Viitanen, M., and Sara, V.R., J. Neural. Transm. Park Dis. Dement. Sect, 1993, vol. 5, no. 3, p. 165–176.

    CAS  PubMed  Article  Google Scholar 

  33. Torres-Aleman, I., Mol. Neurobiol, 2000, vol. 21, no. 3, pp. 153–160.

    CAS  PubMed  Article  Google Scholar 

  34. Nuñez, A., Carro, E., and Torres-Aleman, I., J. Neurophysiol., 2003, vol. 89, no. 6, pp. 3008–3017.

    PubMed  Article  Google Scholar 

  35. Nuñez, A. and Buño, W., Eur. J. Neurosci, 1999, vol. 11, no. 6, pp. 186–1876.

    Article  Google Scholar 

  36. Hoffman, D.A., Magee, J.C., Colbert, C.M., and Johnston, D., Nature, 1977, vol. 387, no. 6636, pp. 869–875.

    Google Scholar 

  37. Sofroniew, M.V., Howe, C.L., and Mobley, W.C., Annu. Rev. Neurosci., 2001, vol. 24. pp. 1217–1281.

    CAS  PubMed  Article  Google Scholar 

  38. Jung, KM., Tan, S., Landman, N., Petrova, K., Murray, S., Lewis, R., Kim, P.K., Kim, D.S., Ryu, S.H., Chao, M.V., and Kim, T.W., J. Biol. Chem., 2003, vol. 278, no. 43, pp. 42161–42169.

    CAS  PubMed  Article  Google Scholar 

  39. Roux, P.P. and Barker, P.A., Prog. Neurobiol, 2002, vol. 67, no. 3, pp. 203–233.

    CAS  PubMed  Article  Google Scholar 

  40. Rabizadeh, S. and Bredesen, D.E., Cytokine Growth Factor Rev, 2003, vol. 14, nos. 3–4, pp. 225–239.

    CAS  PubMed  Article  Google Scholar 

  41. Hazari, M.S., Pan, J.H., and Myers, A.C., Am. J. Physiology Lung Cell Mol. Physiol., 2007, vol. 292, no. 4, pp. L992–L1001.

    CAS  Article  Google Scholar 

  42. Wasling, P., Daborg, J., Riebe, I., Andersson, M., Portelius, E., Blennow, K., Hanse, E., and Zetterberg, H., J. Alzheimers D., vol. 16, no. 1, pp. 1–14.

  43. Palop, J.J. and Mucke, L., Nature Neuroscience, 2010, vol. 13, no. 7, pp. 812–818.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  44. Palop, J.J., Chin, J., Roberson, E.D., Wang, J., Thwin, M.T., Bien-Ly, N., Yoo, J., Ho, K.O., Yu, G.Q., Kreitzer, A., Finkbeiner, S., Noebels, J.L., and Mucke, L., Neuron, 2007, vol. 55, no. 5, pp. 697–711.

    CAS  PubMed  Article  Google Scholar 

  45. Bruno, M.A., Leon, W.C., Fragoso, G., Mushynski, W.E., Almazan, G., and Cuello, A.C., J. Neuropathol. Exp. Neurol., 2009, vol. 68, no. 8, pp. 857–869.

    CAS  PubMed  Article  Google Scholar 

  46. Thoenen, H., Prog. Brain Res., 2000, vol. 128, pp. 183–191.

    CAS  PubMed  Article  Google Scholar 

  47. Paredes, D., Granholm, A.C., and Bickford, P.C., Brain Res., 2007, vol. 1141, pp. 56–64.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  48. Auld, D.S., Mennicken, F., and Quirion, R., J. Neurosci., 2001, vol. 21, no. 10, p. 3375–3382.

    CAS  PubMed  Google Scholar 

  49. Kelsch, W., Hormuzdi, S., Straube, E., Lewen, A., Monyer, H., and Misgeld, U., J. Neurosci., 2001, vol. 21, no. 21, pp. 8339–8347.

    CAS  PubMed  Google Scholar 

  50. Gonzalez de la Vega, A., Buño, W., Pons, S., Garcia-Calderat, M.S., Garcia-Galloway, E., and Torres-Aleman, I., Neuroreport, 2001, vol. 12, no. 6, pp. 1293–1296.

    CAS  PubMed  Article  Google Scholar 

  51. Wan, Q., Xiong, Z.G., and Man, H.Y., Nature, 1997, vol. 388, no. 6643, pp. 686–690.

    CAS  PubMed  Article  Google Scholar 

  52. Fadool, D.A., Tucker, K., Phillips, J.J., and Simmen, J.A., J. Neurophysiol., 2000, vol. 83, no. 4, pp. 2332–2348.

    CAS  PubMed  Google Scholar 

  53. Carro, E., Nuñez, A., Busiguina, S., and Torres-Aleman, I., J. Neurosci., 2000, vol. 20, no. 8, pp. 2926–2933.

    CAS  PubMed  Google Scholar 

  54. Garcia-Galloway, E., Arango, C., Pons, S., and Torres-Aleman, I., Mol. Cell. Neurosci., 2003, vol. 24, no. 4, pp. 1027–1037.

    CAS  PubMed  Article  Google Scholar 

  55. Xie L., Helmerhorst, E., Taddei, K., Plewright, B., Van Bronswijk, W., and Martins, R., J. Neurosci., 2002, vol. 22, no. 10 (RC221), pp. 1–5.

    Google Scholar 

  56. Ullrich, A., Gray, A., Tam, A.W., Yang-Feng, T., Tsubokawa, M., Collins, C., Henzel, W., Le Bon, T., Kathuria, S., and Chen, E., EMBO J., 1986, vol. 5, no. 10, pp. 2503–2512.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Gasparini, L., Netzer, W.J., Greengard, P., and Xu, H., Trends. Pharmacol. Sci., 2002, vol. 23, no. 6, pp. 288–293.

    CAS  PubMed  Article  Google Scholar 

  58. Jain, S., Golde, D.W., Bailey, R., and Geffner, M.E., Endocr. Rev., 1988, vol. 19, no. 5, pp. 625–646.

    Google Scholar 

  59. Buhler, A.V. and Dunwiddie, T.V., J. Neurophysiol., 2002, vol. 87, no. 1, pp. 548–557.

    CAS  PubMed  Google Scholar 

  60. Ge, S. and Dani, J.A., J. Neurosci, 2005, vol. 25, no. 26, pp. 6084–6091.

    CAS  PubMed  Article  Google Scholar 

  61. Bak, L.K., Schousboe, A., and Waagepetersen, H.S., J. Neurochem., 2006, vol. 98, no. 3, pp. 641–653.

    CAS  PubMed  Article  Google Scholar 

  62. Mathews, G.C. and Diamond, J.S., J. Neurosci., 2003, vol. 23, no. 6, pp. 2040–2048.

    CAS  PubMed  Google Scholar 

  63. Mann, E.O. and Paulsen, O., Trends Neurosci., 2007, vol. 30, no. 7, pp. 343–349.

    CAS  PubMed  Article  Google Scholar 

  64. Rissman, R.A., De Blas, A.L., and Armstrong, D.M., J. Neurochem., 2007, vol. 103, no. 4, pp. 1285–1292.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Yenkoyan.

Additional information

Original Russian Text © M.I. Aghajanov, K.B. Yenkoyan, V.A. Chavushyan, J.S. Sarkissian, 2014, published in Neirokhimiya, 2014, Vol. 31, No. 1, pp. 58–70.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aghajanov, M.I., Yenkoyan, K.B., Chavushyan, V.A. et al. The proline-rich hypothalamic peptide is a modulator of functions of neurotrophins and neuronal activity in amyloid-induced neurodegeneration. Neurochem. J. 8, 47–57 (2014). https://doi.org/10.1134/S1819712414010036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712414010036

Keywords

  • proline-rich peptide
  • insulin-like growth factor 1
  • nerve growth factor
  • amyloid
  • neurons