Neurochemical Journal

, Volume 7, Issue 4, pp 308–312 | Cite as

Role of 5-HT7 receptors in the anxiety-like behavior in naloxone-induced withdrawal symptoms in mice

  • S. Shahidi
  • N. Hashemi-FirouziEmail author
Experimental Articles


Pharmacological studies have implicated anxiety behavior in the withdrawal of opiates. There is evidence demonstrating the role of serotonergic system and recently the role of 5-HT7 receptor regulation has been shown in anxiety behavior. The aim of the present study was to evaluate the effects of 5-HT7 receptor agonists and antagonists on anxiety behavior related to morphine withdrawal in male mice. Morphine dependence was induced by repeated treatment with morphine within 5 consecutive days. The anxiety responses were measured after the last morphine administration. Morphine-dependent mice were pretreated with AS19 (3 and 10 mg/kg, i.p.), SB269970 (1 and 10 mg/kg, i.p.) or saline, and subsequently with naloxone (3 mg/kg, s.c), prior to testing in elevated plus-maze. The number of entries into the open arms and the time spent in the open arms were measured. The results showed that there were no significant differences in the number of entries into the open arms and the time spent in open areas of plus-maze between the experimental groups. It was concluded that neither SB269970 nor AS19 had any effect on anxiety behavior related to morphine. The 5-HT7 receptor had no significant role in the anxiety behavior related to morphine withdrawal.


morphine anxiety 5-HT7 receptor elevated plus-maze mice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lutz, P.E., Pradhan, A.A., and Goeldner, C., Eur. Neuropsychopharmacol., 2011, vol. 21, pp. 835–840.PubMedCrossRefGoogle Scholar
  2. 2.
    Benyamin, R., Trescot, A.M., and Datta, S., Pain. Physician., 2008, vol. 11, pp. 105–120.Google Scholar
  3. 3.
    Zhang, Z. and Schulteis, G., Pharmacol. Biochem. Behav., 2008, vol. 89, pp. 392–403.PubMedCrossRefGoogle Scholar
  4. 4.
    Grasing, K., Wang, A., and Schlussman, S., Behav. Brain. Res., 1996, vol. 80, pp. 195–201.PubMedCrossRefGoogle Scholar
  5. 5.
    Hodgson, S.R., Hofford, R.S., and Norris, C.J., Behav. Pharmacol., 2008, vol. 19, pp. 805–811.PubMedCrossRefGoogle Scholar
  6. 6.
    Castilho, V.M., Borelli, K.G., Brandão, M.L., and Nobre, M.J., Physiol. Behav., 2008, vol. 94, pp. 552–562.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang, H.T., Sheng Li Ke Xue Jin Zhan., 1997, vol. 28, pp. 41–44.PubMedGoogle Scholar
  8. 8.
    Yoshioka, M., Matsumoto, M., and Togashi, H., Brain. Res., 1993, vol. 613, pp. 74–79.PubMedCrossRefGoogle Scholar
  9. 9.
    El-Kadi, A.O. and Sharif, S.I., Life. Sci., 1995, vol. 57, pp. 511–516.PubMedCrossRefGoogle Scholar
  10. 10.
    Caillé, S., Stinus, L., and Espejo, E.F., Neuropsychopharmacology, 2003, vol. 28, pp. 276–283.PubMedCrossRefGoogle Scholar
  11. 11.
    Tao, R. and Ma, Z., I.S.R.N. Pharmacol., 2012, vol. 276, pp. 1–13.Google Scholar
  12. 12.
    Müller, C.P., Carey, R.J., and Huston, J.P., Prog. Neurobiol., 2007, vol. 81, pp. 133–178.PubMedCrossRefGoogle Scholar
  13. 13.
    Way, E.L., Loh, H.H., and Shen, F., Science, 1968, vol. 162, pp. 1290–1292.PubMedCrossRefGoogle Scholar
  14. 14.
    Pérez-García, G., Gonzalez-Espinosa, C., and Meneses, A., Behav. Brain Res., 2006, vol. 169, pp. 83–92.PubMedCrossRefGoogle Scholar
  15. 15.
    Gustafson, E.L., Durkin, M.M., and Bard, J.A., Br. J. Pharmacol., 1996, vol. 117, pp. 657–566.PubMedCrossRefGoogle Scholar
  16. 16.
    Filip, M. and Bader, M., Pharmacol. Rep., 2009, vol. 61, pp. 761–777.PubMedGoogle Scholar
  17. 17.
    Hedlund, P.B., Kelly, L., and Mazur, C., Eur. J. Pharmacol., 2004, vol. 487, pp. 125–132.PubMedCrossRefGoogle Scholar
  18. 18.
    Wesolowska, A., Nikiforuk, A., Stachowicz, K., and Tatarczynska, Neuropharmacology, 2006a, vol. 51, pp. 578–586.PubMedCrossRefGoogle Scholar
  19. 19.
    Wesolowska, A., Nikiforuk, A., and Stachowicz, K., Eur. J. Pharmacol., 2006b, vol. 553, pp. 185–190.PubMedCrossRefGoogle Scholar
  20. 20.
    Wesolowska, A., Tatarczynska, E., Nikiforuk, A., and Chojnacka-Wojcik, E., Eur. J. Pharmacol., 2007, vol. 555, pp. 43–47.PubMedCrossRefGoogle Scholar
  21. 21.
    Guscott, M., Bristow, L.J., and Hadingham, K., Neuropharmacology, 2005, vol. 48, pp. 492–502.PubMedCrossRefGoogle Scholar
  22. 22.
    Bonaventure, P., Kelly, L., and Aluisio, L., Pharmacol. Exp., 2007, vol. 321, pp. 690–698.CrossRefGoogle Scholar
  23. 23.
    Ballaz, S.J., Akil, H., and Watson, S.J., Neuroscience, 2007, vol. 149, pp. 192–202.PubMedCrossRefGoogle Scholar
  24. 24.
    Bonaventure, P., Aluisio, L., and Shoblock, J. PLoS One., 2011, vol. 6, p. 20210.CrossRefGoogle Scholar
  25. 25.
    Hedlund, P.B., Psychopharmacology (Berl), 2009, vol. 206, pp. 345–354.CrossRefGoogle Scholar
  26. 26.
    Meuser, T., Pietruck, C., and Gabriel, A., Life. Sci., 2002, vol. 71, pp. 2279–2289.PubMedCrossRefGoogle Scholar
  27. 27.
    Berthold, H., Fozard, J.R., and Engel, G., Eur. J. Pharmacol., 1989, vol. 162, pp. 19–27.PubMedCrossRefGoogle Scholar
  28. 28.
    Brenchat, A., Romero, L., and García, M., Pain., 2009, vol. 141, pp. 239–247.PubMedCrossRefGoogle Scholar
  29. 29.
    Maldonado, R., Daugé, V., and Callebermt, J., Eur. J. Pharmacol., 1989, vol. 165, pp. 199–207.PubMedCrossRefGoogle Scholar
  30. 30.
    Yamaguchi, T., Hagiwara, Y., and Tanaka, H., Brain Res., 2001, vol. 909, pp. 121–126.PubMedCrossRefGoogle Scholar
  31. 31.
    Lister, R.G., Psychopharmacology (Berl), 1987, vol. 92, pp. 180–185.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Neurophysiology Research CenterHamadan University of Medical SciencesHamadanIran

Personalised recommendations