Advertisement

Neurochemical Journal

, Volume 7, Issue 4, pp 303–307 | Cite as

The effects of irradiation by 12C carbon ions on monoamine exchange in several rat brain structures

  • M. I. Matveeva
  • A. S. Shtemberg
  • G. N. Timoshenko
  • E. A. Krasavin
  • V. B. Narkevich
  • P. M. Klodt
  • V. S. Kudrin
  • A. S. BazyanEmail author
Experimental Articles

Abstract

Rats were irradiated with carbon ions (12C) in a Nuklotron accelerator. The irradiation dose was 1 Gy, the energy of the ions was 500 MeV/nuclon, and the linear energy transmission (LET) was 10.6 keV/micron. The animals were decapitated 1 day after irradiation. We isolated the prefrontal cortex, nucleus accumbens, hypothalamus, hippocampus, and striatum, where we determined the concentrations of monoamines and their metabolites. Strong changes were observed in three structures, viz., the prefrontal cortex, nucleus accumbens, and hippocampus. However, significant changes were found in the prefrontal cortex and weaker changes were seen in the nucleus accumbens, whereas changes were insignificant in the hippocampus. This reaction may be related to the fact that the animals were examined on the 2nd day after irradiation. It was shown that an increase in the interval between irradiation and examination of animals results in enhancement of the effects of radiation treatment. The experiments revealed the high sensitivity and reactivity of the prefrontal cortex, which we relate to the key role of this structure in vitally critical processes of behavior.

Keywords

learning heavy particles monoamines metabolites brain structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rabin, B.M., Joseph, J.A., and Shukitt-Hale, B., Adv. Space Res., 2004, vol. 33, no. 8, pp. 1330–1333.PubMedCrossRefGoogle Scholar
  2. 2.
    Rabin, B.M., Joseph, J.A., and Shukitt-Hale, B., Radiat. Res., 2005, vol. 164, no. 4.Google Scholar
  3. 3.
    Machida, M., Lonart, G., and Britten, R.A., Radiat. Res., 2010, vol. 174, no. 5, pp. 618–623.PubMedCrossRefGoogle Scholar
  4. 4.
    Britten, R.A., Davis, L.K., Johnson, A.M., Keeney, S., Siegel, A., Sanford, L.D., Singletary, S.J., and Lonart, G., Radiat. Res., 2012, vol. 177.Google Scholar
  5. 5.
    Shukitt-Hale, B., Casadesus, G., McEwen, J.J., Rabin, B.M., and Joseph, J.A., Radiat. Res., 2000, vol. 154, no. 1, pp. 28–33.PubMedCrossRefGoogle Scholar
  6. 6.
    Schulz-Ertner, D., Karger, C.P., Feuerhake, A., Nikoghosyan, A., Combs, S.E., Jakel, O., Edler, L., Scholz, M., and Debus, J., Int. J. Radiat. Oncol. Biol. Phys, 2007, vol. 68, no. 1, pp. 449–457.PubMedCrossRefGoogle Scholar
  7. 7.
    Schardt, D., Elsasser, T., and Schulz-Ertner, D., Rev. Mod. Phys., 2010, vol. 82, pp. 383–417.CrossRefGoogle Scholar
  8. 8.
    Fossati, P., Molinelli, S., Matsufuji, N., Ciocca, M., Mirandola, A., Mairani, A., Mizoe, J., Hasegawa, A., Imai, R., Kamada, T., Orecchia, R., and Tsujii, H., Phys. Med. Biol., 2012, vol. 57, no. 22, pp. 7543–7554.PubMedCrossRefGoogle Scholar
  9. 9.
    Bazyan, A.S., Neirokhimiya, 1999, vol. 16, no. 2, pp. 88–103.Google Scholar
  10. 10.
    Bazyan, A.S., Usp. Fiziol. Nauk, 2001, vol. 32, no. 3, pp. 3–22.Google Scholar
  11. 11.
    Bazyan, A.S. and Segal, O.L., Neirokhimiya, 2009, vol. 26, no. 2, pp. 93–103.Google Scholar
  12. 12.
    Bazyan, A.S., Orlova, N.V., and Getsova, V.M., Vyssh. Nervn. Deyat. im. I. P. Pavlova, 2000, vol. 50, no. 3, pp. 500–508.Google Scholar
  13. 13.
    Bazyan, A.S. and Grigor’yan, G.A., Usp. Fiziol. nauk, 2006, vol. 37, no. 1, pp. 68–83.Google Scholar
  14. 14.
    Mink, J.W., Fundamental neuroscience, Scuire, L.R., Bloom, F.T., McConnell, S.C., Roberts, J.L., Spitzer, N.C., and Zigmond, M.J., eds., Elsevier Sci.: Acad. Press, 2003, pp. 815–839.Google Scholar
  15. 15.
    Bazyan, A.S., Grigor’yan, G.A., and Ioffe, M.E., Usp. Fiziol. Nauk, 2011, vol. 42, no. 3, pp. 65–80.Google Scholar
  16. 16.
    Roth, R.H., Wolf, M.E., and Deutch, A.Y., Psychopharmacology: The third generation of progress, Meltzer, H.Y., ed., Raven Press Ltd: New York, 1987, pp. 81–94.Google Scholar
  17. 17.
    Roth, R.H. and Elsworth, J.D., Psychopharmacology: The fourth generation of progress, Bloom, F.E. and Kupfer, D.J., eds., Rave Press Ltd.: New York, 1995, pp. 227–243.Google Scholar
  18. 18.
    Raevskii, K.S., Sotnikova, T.D., and Geinetdinov, R.R., Usp. Fiziol. Nauk, 1996, vol. 27, no. 1, pp. 3–29.PubMedGoogle Scholar
  19. 19.
    Greengard, P., Allen, P.B., and Nairn, A.C., Neuron, 1999, vol. 23, no. 3, pp. 435–447.PubMedCrossRefGoogle Scholar
  20. 20.
    Kulagin, D.A. and Bolodinskii, V.K., Usp. Fiziol. Nauk, 1986, vol. 17, no. 1, pp. 92–109.PubMedGoogle Scholar
  21. 21.
    McGregor, I.S., Brain Res. Bul., 1991, vol. 27, no. 2, pp. 225–229.CrossRefGoogle Scholar
  22. 22.
    Gruber, A.J. and McDonald, R.J., Front. Behav. Neurosci., 2012, vol. 6.Google Scholar
  23. 23.
    Ho, S.S., Gonzalez, R.D., Abelson, J.L., and Liberzon, I., Neuroimage, 2012, vol. 63, no. 2, pp. 843–537.PubMedCrossRefGoogle Scholar
  24. 24.
    Schilbach, L., Bzdok, D., Timmermans, B., Fox, P.T., Laird, A.R., Vogeley, K., and Eickhoff, S.B., PLoS One, 2012, vol. 7, Art. 2.Google Scholar
  25. 25.
    Lombardo, M.V., Barnes, J.L., Wheelwright, S.J., and Baron-Cohen, S., PLoS One, 2007, vol. 2, Art. 9.Google Scholar
  26. 26.
    Bechara, A. and Damasio, A.R., Gam. Econom. Behav., 2005, vol. 52, no. 2, pp. 336–372.CrossRefGoogle Scholar
  27. 27.
    O’Neill, M. and Schultz, W., Neuron, 2010, vol. 68, no. 4, pp. 789–800.PubMedCrossRefGoogle Scholar
  28. 28.
    Burke, C.J. and Tobler, P.N., Front Neurosci., 2011, vol. 5.Google Scholar
  29. 29.
    Bland, A.R. and Schaefer, A., Front. Neurosci., 2012, vol. 6.Google Scholar
  30. 30.
    Deneve, S., Front Neurosci., 2012, vol. 6.Google Scholar
  31. 31.
    Olds, J. and Milner, P., J. Comp. Physiol. Psychology, 1954, vol. 47, pp. 419–427.CrossRefGoogle Scholar
  32. 32.
    Redgrave, P., Brain Res., 1978, vol. 155, no. 2, pp. 277–295.PubMedCrossRefGoogle Scholar
  33. 33.
    Sharot, T., Shiner, T., Brown, A.C., Fan, J., and Dolan, R.J., Curr. Biol., 2009, vol. 19, no. 24, pp. 2077–2080.PubMedCrossRefGoogle Scholar
  34. 34.
    Hayes, D.J., Hoang, J., and Greenshaw, A.J., J. Psychopharmacol., 2011, vol. 25, no. 12, pp. 1661–1675.PubMedCrossRefGoogle Scholar
  35. 35.
    Shabanov, P.D. and Lebedev, A.A., Ross.Fiziol. Zhurn, 2011, vol. 97, no. 8, pp. 804–813.Google Scholar
  36. 36.
    Shabanov, P.D., Lebedev, A.A., Lyubimov, A.V., and Kornilov, V.A., Usp. Klin. Farmakol., 2011, vol. 74, no. 1, pp. 3–8.Google Scholar
  37. 37.
    Berridge, K.C. and Kringelbach, M.L., Psychopharmacol. (Berl), 2008, vol. 199, no. 3, pp. 457–480.CrossRefGoogle Scholar
  38. 38.
    Smith, K.S., Berridge, K.C., and Aldridge, J.W., PNAS. USA, 2011, vol. 108, no. 27, pp. 255–264.CrossRefGoogle Scholar
  39. 39.
    McClusky, L.M., Nurse Educ. Today, 2012, vol. 32, no. 1, pp. 101–104.PubMedCrossRefGoogle Scholar
  40. 40.
    Carlezon, W.A.Jr. and Thomas, M.J., Neuropharmacol., 2009, vol. 56, pp. 122–132.CrossRefGoogle Scholar
  41. 41.
    Barson, J.R., Morganstern, I., and Leibowitz, S.F., Physiol. Behav., 2011, vol. 104, no. 1, pp. 128–137.PubMedCrossRefGoogle Scholar
  42. 42.
    Morrow, A.L., Porcu, P., Boyd, K.N., and Grant, K.A., Dialogues Clin. Neurosci, 2006, vol. 8, no. 4, pp. 463–477.PubMedGoogle Scholar
  43. 43.
    Przybycien-Szymanska, M.M., Gillespie, R.A., and Pak, T.R., PLoS One, 2012, vol. 7.Google Scholar
  44. 44.
    Frenois, F., Stinus, L., Di Blasi, F., Cador, M., and Le Moine, C.A., J. Neurosci., 2005, vol. 25, no. 6, pp. 1366–1374.PubMedCrossRefGoogle Scholar
  45. 45.
    Jüngling, K., Seidenbecher, T., Sosulina, L., Lesting, J., Sangha, S., Clark, S.D., Okamura, N., Duangdao, D.M., and Xu, Y.-L., Reinscheid, R.K., and Pape, H.-C., Neuron, 2008, vol. 59, no. 2, pp. 298–310.PubMedCrossRefGoogle Scholar
  46. 46.
    Thornton, E.W., Murray, M., Connors-Eckenrode, T., and Haun, F., Beh. Neurosc., 1994, vol. 108, no. 6, pp. 1150–1162.CrossRefGoogle Scholar
  47. 47.
    Shumake, J., Ilango, A., Scheich, H., Wetzel, W., and Ohl, F.W., J. Neurosci., 2010, vol. 30, no. 17, pp. 5876–5883.PubMedCrossRefGoogle Scholar
  48. 48.
    Li, B., Piriz, J., Mirrione, M., Chung, C., Proulx, C.D., Schulz, D., Henn, F., and Malinow, R., Nature, 2011, vol. 470, no. 7335, pp. 535–539.PubMedCrossRefGoogle Scholar
  49. 49.
    Burgess, N., Maguire, E.A., O’Keefe, J., Neuron, 2002, vol. 35, no. 4, pp. 625–641.PubMedCrossRefGoogle Scholar
  50. 50.
    Bilkey, D.K., Hippocampus, 2007, vol. 17, no. 9, pp. 813–825.PubMedCrossRefGoogle Scholar
  51. 51.
    Stella, F., Cerasti, E., Si, B., Jezek, K., and Treves, A., Neurosci. Biobehav. Rev., 2012, vol. 36, no. 7, pp. 1609–1625.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • M. I. Matveeva
    • 1
  • A. S. Shtemberg
    • 1
  • G. N. Timoshenko
    • 2
  • E. A. Krasavin
    • 2
  • V. B. Narkevich
    • 3
  • P. M. Klodt
    • 3
  • V. S. Kudrin
    • 3
  • A. S. Bazyan
    • 4
    • 5
    Email author
  1. 1.Institute of Medical and Biological ProblemsRussian Academy of SciencesMoscowRussia
  2. 2.United Institute of Nuclear ResearchDubnaRussia
  3. 3.Zakusov Institute of PharmacologyRussian Academy of Medical SciencesMoscowRussia
  4. 4.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia
  5. 5.MoscowRussia

Personalised recommendations