Advertisement

Neurochemical Journal

, Volume 7, Issue 4, pp 270–277 | Cite as

Mechanisms of the influence of dopamine on the functioning of basal ganglia and movement choice (a comparison of models)

  • I. G. SilkisEmail author
Theoretical Articles

Abstract

Previously, we proposed a unified model of the influence of dopamine on the functioning of the topically organized closed cortico-basal ganglia-thalamo-cortical loops that are involved in movement choice and the processing of sensory information [Biosystems. 2001. 59(1): 7–14; 2007. 89(1–3): 227–235]. In this model, the activity of cortical neurons that initiate movement depends on the type of triggering of striatonigral and striatopallidal cells, which express D1 and D2 receptors, respectively, and form “direct” and “indirect” projections via the basal ganglia. The signals that pass via the “direct” and “indirect” pathways have disinhibiting and inhibiting influences on the thalamic cells that project to the cortex. According to our modulation rules, dopamine promotes long-term potentiation of the efficacy of cortical inputs, which strongly activate striatonigral and weakly activate striatopallidal neurons, and long-term depression of inputs that weakly activate striatonigral and strongly activate striatopallidal neurons. Therefore, dopamine synergistically increases disinhibition and decreases inhibition of thalamic neurons, which excite initially strongly activated cortical neurons. Simultaneously, thalamic neurons, which excite initially weakly activated cortical neurons, became less disinhibited and more inhibited. As a result of an increase in the activity of certain groups of striatonigral and striatopallidal neurons, one movement is selected and competing movements are suppressed. According to some models that consider modulation of only strong corticostriatal inputs, a dopamine-dependent increase in the activity of striatonigral neurons promotes the performance of a movement and weakening of the activity of striatopallidal cells prohibits a movement or suppresses competing movements. Modern experimental data support our model. The use of Cre-dependent viral expression of a genetically encoded calcium probe allowed to record the activities of identified striatal neurons with D1 and D2 receptors in mice that press a lever in response to a sensory stimulus. It was shown that this movement is preceded by a considerable increase in the activities of both striatonigral and striatopallidal cells [Nature. 2013. 494(7436): 238–242].

Keywords

dopamine striatum long-term potentiation long-term depression corticostriatal inputs direct and indirect pathway via the basal ganglia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shuvaev, V.T. and Suvorov, N.F., Bazal’nye ganglii i povedenie (Basal ganglia and behavior), St. Petersburg: Nauka, 2001.Google Scholar
  2. 2.
    Alexander, G.E., Grutcher, M.D., Trends Neurosci., 1990, vol. 13, no. 7, pp. 266–272.PubMedCrossRefGoogle Scholar
  3. 3.
    Romanelli, P., Esposito, V., Schaal, D.W., and Heit, G., Brain Res. Rev., 2005, vol. 48, no. 1, pp. 112–128.PubMedCrossRefGoogle Scholar
  4. 4.
    Stephenson-Jones, M., Samuelsson, E., Ericsson, J., Robertson, B., and Grillner, S., Curr. Biol., 2011, vol. 21, no. 13, pp. 1081–1091.PubMedCrossRefGoogle Scholar
  5. 5.
    Gess, R.W., Coates, M.I., and Rubidge, B.S., Nature, 2006, vol. 443, no. 7114, pp. 981–984.PubMedCrossRefGoogle Scholar
  6. 6.
    Middleton, F.A. and Strick, P.L., Cereb. Cortex, 2002, vol. 12, no. 9, pp. 926–935.PubMedCrossRefGoogle Scholar
  7. 7.
    Middleton, F.A. and Strick, P.L., Brain Cogn., 2000, vol. 42, no. 2, pp. 183–200.PubMedCrossRefGoogle Scholar
  8. 8.
    Joel, D., Mov. Disord., 2001, vol. 16, no. 3, pp. 407–423.PubMedCrossRefGoogle Scholar
  9. 9.
    Herrero, M.T., Barcia, C., and Navarro, J.M., Childs Nerv. Syst., 2002, vol. 18, no. 8, pp. 386–404.PubMedCrossRefGoogle Scholar
  10. 10.
    Cui, G., Jun, S.B., Jin, X., Pham, M.D., Vogel, S.S., Lovinger, D.M., and Costa, R.M., Nature, 2013, vol. 494, no. 7436, pp. 238–242.PubMedCrossRefGoogle Scholar
  11. 11.
    Silkis, I., Biosystems, 2001, vol. 59, no. 1, pp. 7–14.PubMedCrossRefGoogle Scholar
  12. 12.
    Sil’kis, I.G., Neurosci. Behav. Physiol., 2002, vol. 32, no. 3, pp. 205–212.PubMedCrossRefGoogle Scholar
  13. 13.
    Parent, A. and Hazrati, L.N., Brain Res. Rev., 1995a, vol. 20, no. 1, pp. 91–127.PubMedCrossRefGoogle Scholar
  14. 14.
    Parent, A. and Hazrati, L.N., Brain Res. Rev., 1995b, vol. 20, no. 1, pp. 128–154.PubMedCrossRefGoogle Scholar
  15. 15.
    Middleton, F.A. and Strick, P.L., Proc. Natl. Acad. Sci. USA, 1996, vol. 93, no. 16, pp. 8683–8687.PubMedCrossRefGoogle Scholar
  16. 16.
    De las Heras, S., Mengual, E., and Gimenes-Amaya, J.M., NeuroReport, 1998, vol. 9, no. 2, pp. 275–278.PubMedCrossRefGoogle Scholar
  17. 17.
    Gerfen, C., Engber, T., Mahan, L., Susel, Z., Chase, T., Monsma, F., and Sibley, D., Science, 1990, vol. 250, no. 4986, pp. 1429–1432.PubMedCrossRefGoogle Scholar
  18. 18.
    Bertran-Gonzalez, J., Herve, D., Girault, J.A., and Valjent, E., Front. Neuroanat., 2010, vol. 7, p. 4.Google Scholar
  19. 19.
    Hikosaka, O., Takikawa, Y., and Kawagoe, R., Physiol. Rev., 2000, vol. 80, no. 3, pp. 954–978.Google Scholar
  20. 20.
    Gurney, K., Prescott, T.J., and Redgrave, P., Biol. Cybern., 2001, vol. 84, no. 6, pp. 401–410.PubMedCrossRefGoogle Scholar
  21. 21.
    Surmeier, D.J., Ding, J., Day, M., Wang, Z., and Shen, W., Trends Neurosci., 2007, vol. 30, no. 5, pp. 228–235.PubMedCrossRefGoogle Scholar
  22. 22.
    Sil’kis, I., Biosystems, 2000, vol. 57, no. 3, pp. 187–196.CrossRefGoogle Scholar
  23. 23.
    Sil’kis, I.G., Ros. Fiziol. Zhurn. im. I. M. Sechenova, 2000a, vol. 86, no. 5, pp. 507–518.Google Scholar
  24. 24.
    Sil’kis, I.G., Ros. Fiziol. Zhurn. im. I. M. Sechenova, 2000b, vol. 86, no. 5, pp. 519–531.Google Scholar
  25. 25.
    Sil’kis I.G., Neurosci. Behav. Physiol., 2003, vol. 33, no. 4, pp. 379–386.PubMedCrossRefGoogle Scholar
  26. 26.
    Smith, Y., Bevan, M.D., Shink, E., and Bolam, J.P., Neuroscience, 1998, vol. 86, no. 2, pp. 353–387.PubMedCrossRefGoogle Scholar
  27. 27.
    Floresco, S.B., Blaha, C.D., Yang, C.R., and Phillips, A.G., J. Neurosci., 2001, vol. 21, no. 8, pp. 2851–2860.PubMedGoogle Scholar
  28. 28.
    Kerr, J.N. and Wickens, J.R., J. Neurophysiol., 2001, vol. 85, no. 1, pp. 117–124.PubMedGoogle Scholar
  29. 29.
    Charara, A. and Grace, A.A., Neuropsychopharmacology, 2003, vol. 28, no. 8, pp. 1412–1421.PubMedCrossRefGoogle Scholar
  30. 30.
    Doig, N.M., Moss, J., and Bolam, J.P., J. Neurosci., 2010, vol. 30, no. 44, pp. 14610–14618.PubMedCrossRefGoogle Scholar
  31. 31.
    O’Donnell, P., Eur. J. Neurosci., 2003, vol. 17, no. 3, pp. 429–435.PubMedCrossRefGoogle Scholar
  32. 32.
    Nicola, S.M., Psychopharmacology, 2007, vol. 191, no. 3, pp. 521–550.PubMedCrossRefGoogle Scholar
  33. 33.
    Joel, D., Niv, Y., and Ruppin, E., Neural Netw., 2002, vol. 15, nos. 4-6, pp. 535–547.PubMedCrossRefGoogle Scholar
  34. 34.
    Durieux, P.F. and Schiffmann, S.N., and de Kerchove D’exaerde, A., Front. Neuroanat., 2011, 5:40. doi: 10.3389/fnana.2011.00040.Google Scholar
  35. 35.
    Murer, M.G., Riquelme, L.A., Tseng, K.Y., Cristal, A., Santos, J., and Pazo, J.H., NeuroReport, 1997, vol. 8, no. 3, pp. 783–787.PubMedCrossRefGoogle Scholar
  36. 36.
    Waszczak, B.L., Martin, L., Boucher, N., Zahr, N., Sikes, R.W., and Stellar, J.R., Brain Res., 2001, vol. 920, nos. 1–2, pp. 170–182.PubMedCrossRefGoogle Scholar
  37. 37.
    Waszczak, B.L., Martin, L.P., Finlay, H.E., Zahr, N., and Stellar, J.R., J. Pharmacol. Exp. Ther., 2002, vol. 300, no. 3, pp. 850–861.PubMedCrossRefGoogle Scholar
  38. 38.
    Surmeier, D.J., Nature, 2013, vol. 494, no. 7436, pp. 178–179.PubMedCrossRefGoogle Scholar
  39. 39.
    Ruskin, D.N., Bergstrom, D.A., Mastropietro, C.W., Twery, M.J., and Walters, J.R., Neuroscience, 1999, vol. 91, no. 3, pp. 935–946.PubMedCrossRefGoogle Scholar
  40. 40.
    Silkis, I., Biosystems, 2007, vol. 89, nos. 1–3, pp. 227–235.PubMedCrossRefGoogle Scholar
  41. 41.
    Sil’kis, I.G., Neurosci. Behav. Physiol, 2007, vol. 37, no. 8, pp. 779–790.PubMedCrossRefGoogle Scholar
  42. 42.
    Sil’kis, I.G., Vyssh. Nervn. Deyat. im. I. P. Pavlova, 2005, vol. 55, no. 5, pp. 592–607.Google Scholar
  43. 43.
    Sil’kis, I.G., Usp. Fiziol. Nauk, 2007, vol. 38, no. 4.Google Scholar
  44. 44.
    Sil’kis, I.G., Ros. Fiziol. Zhurn. im. I. M. Sechenova, 2002, vol. 88, no. 2, pp. 144–157.Google Scholar
  45. 45.
    Sil’kis, I.G., Neurosci. Behav. Physiol, 2006, vol. 36, no. 2, pp. 163–175.PubMedCrossRefGoogle Scholar
  46. 46.
    Sil’kis, I.G., Neurosci. Behav. Physiol, 2006, vol. 36, no. 6, pp. 631–643.PubMedCrossRefGoogle Scholar
  47. 47.
    Sil’kis, I.G., Usp. Fiziol. Nauk, 2003, vol. 34, no. 4, pp. 54–74.PubMedGoogle Scholar
  48. 48.
    Sil’kis, I.G., Ros. Fiziol. Zhurn. im. I. M. Sechenova, 2004, vol. 90, no. 3, pp. 282–293.Google Scholar
  49. 49.
    Silkis, I.G., Neurochem. J., 2007, vol. 1, no. 4, pp. 281–287.CrossRefGoogle Scholar
  50. 50.
    Sil’kis, I.G., Usp. Fiziol. Nauk, 2005, vol. 36, no. 2, pp. 66–83.PubMedGoogle Scholar
  51. 51.
    Lintas, A., Sil’kis, I.G., Alberi, L., and Villa, A.E.P., Brain Res., 2012, vol. 1434, pp. 142–151.PubMedCrossRefGoogle Scholar
  52. 52.
    Sil’kis, I.G., Neurochem. J., 2008, vol. 2, no. 3, pp. 157–163.CrossRefGoogle Scholar
  53. 53.
    Sil’kis, I.G., Ros. Fiziol. Zhurn. im. I. M. Sechenova, 2007, vol. 93, no. 3, pp. 225–235.Google Scholar
  54. 54.
    Sil’kis, I.G., Usp. Fiziol. Nauk, 2011, vol. 42, no. 2, pp. 41–56.PubMedGoogle Scholar
  55. 55.
    Sil’kis, I.G., Neurochem. J., 2012, vol. 6, no. 2, pp. 144–152.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations