Advertisement

Neurochemical Journal

, Volume 7, Issue 1, pp 69–75 | Cite as

The metabolism of monoamines in the central nervous system during compensated and decompensated heart failure

  • M. L. MamalygaEmail author
Experimental Articles
  • 38 Downloads

Abstract

We found different associations between disturbances in the brain and heart during compensated and decompensated heart failure. Changes in the content of monoamines (MAs) in the brain at different stages of heart failure (HF) were related to different causes. The increased activity of MA-ergic systems during compensated HF was apparently associated with the functional load that is experienced by the structures of the brain during the development of cerebral processes of autonomic regulation of the compensatory function of the heart. Cerebral hemodynamics in patients with decompensated HF leads to a decrease in the activities of the dopaminergic and serotonergic systems and a permanent mismatch of the central and autonomic mechanisms of cardiac-activity regulation. A functional load test with the administration of dopamine and serotonin precursors revealed unequal MA-synthesizing capabilities of the brain in animals with compensated and decompensated HF. Reduced capacity of the MA-ergic systems during decompensated HF may lead to overwork of the central mechanisms of regulation and the gradual depletion and disruption of compensatory mechanisms, which aggravates the progression of heart failure.

Keywords

monoamines chronic heart failure brain seizures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Halaris, A., Int. Angiol., 2009, vol. 28, no. 2, pp. 92–99.PubMedGoogle Scholar
  2. 2.
    Manev, H., Cardiovasc. Psychiatry Neurol., 2009.Google Scholar
  3. 3.
    Menteer, J., Macey, P.M., Woo, M.A., Panigrahy, A., and Harper, R.M., Pediatr. Cardiol., 2010, vol. 31, no. 7, pp. 969–976.PubMedCrossRefGoogle Scholar
  4. 4.
    Janszky I., Hallqvist J., Tomson T., Ahlbom A., Mukamal, K.J. and Ahnve, S., Brain, 2009, vol. 132, no. 10, pp. 2798–2804.PubMedCrossRefGoogle Scholar
  5. 5.
    Montepietra, S., Cattaneo, L., and Granella, F., Seizure, 2009, vol. 18, no. 5, pp. 379–381.PubMedCrossRefGoogle Scholar
  6. 6.
    Kazachenko, A.A., Okovityi, S.V., Kulikov, A.N., Gustainis, K.R., Nagornyi, M.B., Shulenin, S.N., Erokhina, I.L., and Emel’yanova, O.I., Eksperimental’naya i Klinicheskaya Farmakologiya, 2008, vol. 71, no. 6, pp. 16–19.Google Scholar
  7. 7.
    Lushnikova, E.L., Nepomnyashchikh, L.M., Molodykh, N.A., Klinnikova, M.G., and Molodykh, O.P., Fundamental’nye Issledovaniya. Meditsinskie Nauki, 2011, no. 6, pp. 98–102.Google Scholar
  8. 8.
    Nepomnyashchikh, L.M., Lushnikova, E.L., and Semenov, D.E., Regeneratorno-plasticheskaya nedostatochnost’ serdtsa: Morfologicheskie osnovy i molekulyarnye mekhanizmy. (Regenerative Plastic Heart Failure: Morphological Basis and Molecular Mechanisms), Moscow: Izd-vo RAMN, 2003.Google Scholar
  9. 9.
    Schimmel, K.J., Richel, D.J., Brink, R.B., and Guchelaar, H.J., Cancer Treat. Rev., 2004, vol. 30, no. 2, pp. 181–191.PubMedCrossRefGoogle Scholar
  10. 10.
    Bazyan, A.S., Neiroinformatika (Neuroinformatics). 2006, Part 1, pp. 130–136.Google Scholar
  11. 11.
    Sole, M.J., Benedict, C.R., Versteeg, D.H., and Kloet, E.R., J. Mol. Cell Cardiol., 1985, vol. 17, no. 11, pp. 1055–1063.PubMedCrossRefGoogle Scholar
  12. 12.
    Clough, R.W., Peterson, B.R., Steenbergen, J.L., Jobe, P.C., Eells, J.B., Browning, R.A., Mishra, P.K., Epilepsy Res., 1998, vol. 29, pp. 137–144.CrossRefGoogle Scholar
  13. 13.
    Jobe, P.C., Dailey, J.W., and Wernicke, J.F., Crit. Rev. Neurobiol., 1999, vol. 13, no. 4, pp. 317–356.PubMedGoogle Scholar
  14. 14.
    Mamalyga, M.L., Neirokhimiya, 2012, vol. 29, no. 1, pp. 45–51.Google Scholar
  15. 15.
    Kryzhanovskii, G.N., Zhurn. Nevrol. I Psikhiatr., 2002, no. 11, pp. 4–13.Google Scholar
  16. 16.
    Björkman, S.T., Miller, S.M., Rose, S.E., Wallis, L.E.D., Burke, C., Stevenson, N.J., and Colditz, P.B., Neuroscience, 2010, vol. 166, no. 1, pp. 157–167.PubMedCrossRefGoogle Scholar
  17. 17.
    Sanchez, R.M., and Jensen, F.E., Modeling Hypoxia-Induced Seizures and Hypoxic Encephalopathy in the Neonatal Period Models of Seizures and Epilepsy, United States: Academic Press, 2006, pp. 323–331.Google Scholar
  18. 18.
    Semiokhina, A.F., Fedotova, I.B., and Poletaeva, I.I., Zhurn. Vyssh. Nerv. Deyat., 2006, vol. 56, no. 3, pp. 298–316.Google Scholar
  19. 19.
    Pintor, M., Mefford, I.N., Hutter, I., Pocotte, S.L., Wyler, A.R., and Nadi, N.S., Synapse, 1990, vol. 5, no. 2, pp. 152–156.PubMedCrossRefGoogle Scholar
  20. 20.
    Alenina, N., Kikic, D., Todiras, M., Mosienko, V., Qadri, F., Plehm, R., Boyé, Ph., Vilianovitch, L., Sohr, R., Tenner, K., Hörtnagl, H., and Bader, M., Proc. Natl. Acad. Sci. USA, 2009, vol. 106, no. 25, pp. 10332–10337.PubMedCrossRefGoogle Scholar
  21. 21.
    Chazov, E.I., Zaretskii, D.V., and Kalenikova, E.I., Dokl. Ross. Akad. Nauk, 1996, vol. 348, no. 4, pp. 570–572.Google Scholar
  22. 22.
    Nissenbaum, L.K., Zigmondt, M.T., Swed, A.F., and Abercrombie, E.D., J. Neurosci., 1991, vol. 11, no. 5, pp. 1478–1484.Google Scholar
  23. 23.
    Kaye, D.M., Lambert, G.W., Lefkovits, J., et al., Journal of the American College of Cardiology, 1994, vol. 23, no. 3, pp. 570–578.PubMedCrossRefGoogle Scholar
  24. 24.
    Bounhoure, J.P., Galinier, M., Boveda, S., and Albenque, J.P., Bull. Acad. Natl. Med., 2010, vol. 194, no. 6, pp. 997–1010.PubMedGoogle Scholar
  25. 25.
    Comet, M.-A., Bernard, J.F., Hamon, M., Laguzzi, R., and Sevoz-Couche, C., Eur. J. Neurosci., 2007, vol. 26, no. 2, pp. 345–354.PubMedCrossRefGoogle Scholar
  26. 26.
    Qvigstad, E., Sjaastad, I., Brattelid, T., Nunn, C., Swift, F., Birkeland, J.A., Krobert, K.A., andersen, G.O., Sejersted, O.M., Osnes, J.B., Levy, F.O., and Skomedal, T., Circulation Res., 2005, vol. 97, no. 3, pp. 268–276.PubMedCrossRefGoogle Scholar
  27. 27.
    Brattelid, T., Qvigstad, E., Birkeland, J.A., Swift, F., Bekkevold, S.V., Krobert, K.A., Sejersted, O.M., Skomedal, T., Osnes, J.B., Levy, F.O., and Sjaastad, I., J. Mol. Cell. Cardiology, 2007, vol. 43, no. 6, pp. 767–779.CrossRefGoogle Scholar
  28. 28.
    Montepietra, S., Cattaneo, L., Granella, F., Maurizio, A., Sasso, E., Pavesi, G., and Bortone, E., Seizure, 2009, vol. 18, no. 5, pp. 379–381.PubMedCrossRefGoogle Scholar
  29. 29.
    Tigaran, S., Molgaard, H., McClelland, R., Dam, M., and Jaffe, A.S., Neurology, 2003, vol. 60, no. 3, pp. 492–495.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Moscow State Pedagogical UniversityMoscowRussia
  2. 2.MoscowRussia

Personalised recommendations