Skip to main content
Log in

Protein markers of hypoxic-ischemic lesions of the CNS in the perinatal period

  • Review Articles
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

Pre-eclampsia, eclampsia, and acute intranatal hypoxia often lead to the development of perinatal hypoxic-ischemic lesions of the CNS. The disease-related structural changes are periventricular leukomalacia (PVL) and intraventricular hemorrhage (IVH). Hypoxic-ischemic lesions of the CNS in the perinatal period can result in hydrocephalus, microcephaly, infantile cerebral paralysis (ICP), epilepsy, and psychomotor retardation. It is not always possible to accurately evaluate the disease severity and make a prognosis using routine methods of clinical, instrumental, and laboratory examination. It has been proven that a perinatal hypoxic-ischemic lesion of the CNS is always accompanied by the alteration of blood-brain barrier (BBB) permeability; therefore, the neuron-specific proteins (NSPs) outside the brain may be considered as markers of a pathologic process. To date more than 120 NSPs, in particular the non-enzymatic Ca2+-binding NSP, non-enzymatic NSPs responsible for cell recognition and cell adhesion, contractile and cytoskeletal proteins in nerve tissue, regulatory and transport secreted NSPs, myelin proteins, and glial NSPs have more or less detailed descriptions. To evaluate the state of the blood-brain barrier, it is rational to use the most-studied proteins, which are markers for neurons and astrocytes. These are the glial fibrillary acidic protein (GFAP) and the neuron-specific enolase (NSE). They do not cross the BBB and practically cannot be determined in serum under normal conditions. When BBB permeability is compromised, NSPs penetrate into the peripheral blood and may be measured. Dynamic determination of NSPs in serum may be used to evaluate BBB resistance, to estimate the severity of a CNS lesion, and to determine the prognosis for children with a perinatal hypoxic-ischemic lesion of the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blinov, D.V., Epilepsiya i Paroksizmal’nye Sostoyaniya, 2011, vol. 2, pp. 28–33.

    Google Scholar 

  2. Blinov, D.V., Immunoenzymatic Analysis of Neuron-specific Antigens in the BBB Permeability Measurements in the Perinatal Hypoxic-ischemic Lesions of the CNS (Clinico-Experimental Investigation), Cand. Sci. (Med.) Dissertation, Moscow: 2004.

    Google Scholar 

  3. Blinov, D.V. and Sandukovskaya, S.I., Epilepsiya i Paroksizmal’nye Sostoyaniya, 2010, vol. 2, no. 4, pp. 12–22.

    Google Scholar 

  4. Blinov, D.V., Akusherstvo, Ginekologiya i Reproduktsiya, 2011, vol. 2, pp. 5–12.

    Google Scholar 

  5. Order of Ministry of Health and Social Development of Russia no. 1687, December 27, 2011.

  6. Volpe, J.J., Neurology of the Newborn, Philadelphia, Pa: Saunders Elsevier, 2008.

    Google Scholar 

  7. Yakunin, Yu.A. and Perminov, V.S., Ros. Vest. Perinat. i Ped., 1993, vol. 38, no. 2, p. 20–24.

    Google Scholar 

  8. Klassifikatsiya posledstvii perinatal’nykh porazhenii nervnoi sistemy u novorozhdennykh. Metodicheskie rekomendatsii (Classification of Consequences of Perinatal Lesions of Nervous System in Newborns. Methodical Recommendations), 2005, RASPM.

  9. Sehba, F.A., Hou, J., Pluta, R.M., and Zhang, J.H., Prog. Neurobiol., 2012, vol. 97, no. 1, pp. 14–37.

    Article  PubMed  Google Scholar 

  10. Sehba, F.A., Pluta, R.M., and Zhang, J.H., Mol. Neurobiol., 2011, vol. 43, no. 1, pp. 27–40.

    Article  PubMed  CAS  Google Scholar 

  11. Bradbury, M., The Concept of a Blood-Brain Barrier, New York: John Wiley & Sons, 1979.

    Google Scholar 

  12. Ashmarin, I.P. and Stukalov, P.V., Neirokhimiya (Neurochemistry), 1996.

    Google Scholar 

  13. Chekhonin, V.P., Dmitrieva, T.B., and Zhirkov, Yu.A., Immunokhimicheskii analiz neirospetsificheskikh antigenov (Immunoenzymatic Analysis of the Neuronspecific Antigens), Moscow, 2000.

    Google Scholar 

  14. Chekhonin, V.P., Lebedev, S.V., Blinov, D.V., Gurina, O.I., Semenova, A.V., Lazarenko, I.P., Petrov, S.V., Ryabukhin, I.A., Rogatkin, S.O., and Volodin, N.N., Voprosy Ginekologii, Akusherstva i Perinatologii, 2004, vol. 3, no. 2, pp. 50–56.

    Google Scholar 

  15. Eng, L.F., Ghirnikar, R.S., and Lee, Y.L., Neurochem. Res., nos. 9–10, pp. 1439–1451.

  16. Chekhonin, V.P., Gurina, O.I., and Dmitrieva, T.B. Monoklonal’nye antitela k neirospetsificheskim belkam (The Monoclonal Antibodies to Neuron-specific Proteins), Moscow: Meditsina, 2007.

    Google Scholar 

  17. Siegel, G. and Schratt, G., Identification of Novel MicroRNA Regulatory Proteins in Neurons Using RNAi-Based Screening. http://www.sfn.org/siteobjects/published/3Schratt.pdf. Cited February 13, 2012.

    Google Scholar 

  18. Steinacker, P., Aitken, A., and Otto, M., Semin. Cell Dev. Biol., 2011, vol. 22, no. 7, pp. 696–704.

    Article  PubMed  CAS  Google Scholar 

  19. Einav, S., Kaufman, N., Algur, N., and Kark, J.D., J. Am. Coll. Cardiol, 2012, vol. 60, no. 4, pp. 304–311.

    Article  PubMed  CAS  Google Scholar 

  20. Palmio, J., Huuhka, M., Laine, S., Huhtala, H., Peltola, J., Leinonen, E., Suhonen, J., and Keranen, T., Psychiatry Res., vol. 177, nos. 1–2, pp. 97–100.

  21. Shinozaki, K., Oda, S., Sadahiro, T., Nakamura, M., Abe, R., Nakada, T.A., Nomura, F., Nakanishi, K., Kitamura, N., and Hirasawa, H., Resuscitation, 2009, vol. 80, no. 8, pp. 870–875.

    Article  PubMed  CAS  Google Scholar 

  22. Streitbürger, D.P., Arelin, K., and Kratzsch, J., Thiery J., Steiner J., Villringer A., Mueller K., Schroeter M.L, PLoS One, 2012, vol. 7, no. 8, e43284.

    Google Scholar 

  23. Ngankam, L., Kazantseva, N.V., and Gerasimova, M.M., Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova, 2011, vol. 111, no. 7, pp. 61–65.

    PubMed  CAS  Google Scholar 

  24. Ennen, C.S., Huisman, T.A., Savage, W.J., Northington, F.J., Jennings, J.M., Everett, A.D., and Graham, E.M., Am. J. Obstet. Gynecol., 2011, vol. 205, no. 3, pp. 251–257.

    Article  PubMed  CAS  Google Scholar 

  25. Middeldorp, J. and Hol, E.M., Prog. Neurobiol., 2011, vol. 93, no. 3, pp. 421–433.

    Article  PubMed  CAS  Google Scholar 

  26. Schiff, L., Hadker, N., Weiser, S., and Rausch, C., Mol. Diagn. Ther., 2012, vol. 16, no. 2, pp. 79–92.

    Article  PubMed  CAS  Google Scholar 

  27. Ramaswamy, V., Horton, J., Vandermeer, B., Buscemi, N., Miller, S., and Yager, J., Pediatr. Neurol., 2009, vol. 40, no. 3, pp. 215–226.

    Article  PubMed  Google Scholar 

  28. Oh, S.H., Lee, J.G., Na, S.J., Park, J.H., Choi, Y.C., and Kim, W.J., Arch. Neurol., 2003, vol. 60, no. 1, pp. 37–41.

    Article  PubMed  Google Scholar 

  29. Paulus, W., Acta. Neuropathol., 2009, vol. 118, no. 5, pp. 603–604.

    Article  PubMed  Google Scholar 

  30. Thomberg, E., Thiringer, K., Hagberg, H., and Kjellmer, I., Arch. Dis. Child. Fetal. Neonatal., 1995, no. 72, pp. 39–42.

    Google Scholar 

  31. Kamphuis, W., Mamber, C., Moeton, M., Kooijman, L., Sluijs, J.A., Jansen, A.H., Verveer, M., de Groot, L.R., Smith, V.D., Rangarajan, S., Rodriguez, J.J., Orre, M., and Hol, E.M., PLoS One, 2012, vol. 7, no. 8, e42823.

    Article  PubMed  CAS  Google Scholar 

  32. Rai, A., Maurya, S.K., Sharma, R., and Ali, S., Toxicol. Mech. Methods, 2012. doi: 10.3109/15376516.2012.721809.

    Google Scholar 

  33. van den Berge, S.A., Middeldorp, J., Zhang, C.E., Curtis, M.A., Leonard, B.W., Mastroeni, D., Voorn, P., van de Berg, W.D., Huitinga, I., and Hol, E.M., Aging Cell, 2010, vol. 9, no. 3, pp. 313–326.

    Article  PubMed  Google Scholar 

  34. Di Domenico, F., Coccia, R., Butterfield, D.A., and Perluigi, M., 2011, vol. 1814, no. 12, pp. 1785–1795.

  35. Mukhtarova, S.N., Meditsinskie Novosti Gruzii, 2010, vol. 4, no. 181, pp. 49–54.

    Google Scholar 

  36. Nagdyman, N., Kömen, W., Ko, H., Muller, C., and Obladen, M., Pediatric Research, 2001, vol. 49, no. 4, pp. 133–139.

    Article  Google Scholar 

  37. Berger, R., Pierce, M., Wisnievski, S., Adelson, P., Clark, R., Ruppel, R., and Kochanek, P., Pediatrics, 2002, vol. 109, no. 2, pp. 34–38.

    Article  Google Scholar 

  38. Clark, R., Kochalek, P., and Adelson, P., J. Pediatr., 2000, no. 137, pp. 197–204.

    Google Scholar 

  39. Elimian, A., Figueroa, R., Verma, U., Visintainer, P., Sehgal, P., and Tejani, N., Obst. Gynecol., 1998, vol. 92, no. 1, pp. 546–555.

    Article  CAS  Google Scholar 

  40. Garcia-Alix, A., Cabanas, F., Pellicer, A., Hernanz, A., Stiris, T.A., and Quero, J., Pediatrics, 1994, no. 93, pp. 234–240.

    Google Scholar 

  41. Blennow, M., Savman, K., Ilves, P., Thoresen, M., and Rosengren, L., Acta. Paediatr., 2001, no. 90, pp. 1171–1175.

    Google Scholar 

  42. Greishen, G., Biol. Neonate, 1992, no. 62, pp. 243–247.

    Google Scholar 

  43. Levene, M., Biol Neonate, 1992, no. 62, pp. 248–251.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Blinov.

Additional information

Original Russian Text © D.V. Blinov, A.A. Terent’ev, 2013, published in Neirokhimiya, 2013, Vol. 30, No. 1, pp. 22–28.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blinov, D.V., Terent’ev, A.A. Protein markers of hypoxic-ischemic lesions of the CNS in the perinatal period. Neurochem. J. 7, 16–22 (2013). https://doi.org/10.1134/S1819712413010029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712413010029

Keywords

Navigation