Neurochemical Journal

, Volume 7, Issue 1, pp 16–22 | Cite as

Protein markers of hypoxic-ischemic lesions of the CNS in the perinatal period

  • D. V. BlinovEmail author
  • A. A. Terent’ev
Review Articles


Pre-eclampsia, eclampsia, and acute intranatal hypoxia often lead to the development of perinatal hypoxic-ischemic lesions of the CNS. The disease-related structural changes are periventricular leukomalacia (PVL) and intraventricular hemorrhage (IVH). Hypoxic-ischemic lesions of the CNS in the perinatal period can result in hydrocephalus, microcephaly, infantile cerebral paralysis (ICP), epilepsy, and psychomotor retardation. It is not always possible to accurately evaluate the disease severity and make a prognosis using routine methods of clinical, instrumental, and laboratory examination. It has been proven that a perinatal hypoxic-ischemic lesion of the CNS is always accompanied by the alteration of blood-brain barrier (BBB) permeability; therefore, the neuron-specific proteins (NSPs) outside the brain may be considered as markers of a pathologic process. To date more than 120 NSPs, in particular the non-enzymatic Ca2+-binding NSP, non-enzymatic NSPs responsible for cell recognition and cell adhesion, contractile and cytoskeletal proteins in nerve tissue, regulatory and transport secreted NSPs, myelin proteins, and glial NSPs have more or less detailed descriptions. To evaluate the state of the blood-brain barrier, it is rational to use the most-studied proteins, which are markers for neurons and astrocytes. These are the glial fibrillary acidic protein (GFAP) and the neuron-specific enolase (NSE). They do not cross the BBB and practically cannot be determined in serum under normal conditions. When BBB permeability is compromised, NSPs penetrate into the peripheral blood and may be measured. Dynamic determination of NSPs in serum may be used to evaluate BBB resistance, to estimate the severity of a CNS lesion, and to determine the prognosis for children with a perinatal hypoxic-ischemic lesion of the CNS.


CNS NSP NSE GFAP BBB hypoxia ischemia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blinov, D.V., Epilepsiya i Paroksizmal’nye Sostoyaniya, 2011, vol. 2, pp. 28–33.Google Scholar
  2. 2.
    Blinov, D.V., Immunoenzymatic Analysis of Neuron-specific Antigens in the BBB Permeability Measurements in the Perinatal Hypoxic-ischemic Lesions of the CNS (Clinico-Experimental Investigation), Cand. Sci. (Med.) Dissertation, Moscow: 2004.Google Scholar
  3. 3.
    Blinov, D.V. and Sandukovskaya, S.I., Epilepsiya i Paroksizmal’nye Sostoyaniya, 2010, vol. 2, no. 4, pp. 12–22.Google Scholar
  4. 4.
    Blinov, D.V., Akusherstvo, Ginekologiya i Reproduktsiya, 2011, vol. 2, pp. 5–12.Google Scholar
  5. 5.
    Order of Ministry of Health and Social Development of Russia no. 1687, December 27, 2011.Google Scholar
  6. 6.
    Volpe, J.J., Neurology of the Newborn, Philadelphia, Pa: Saunders Elsevier, 2008.Google Scholar
  7. 7.
    Yakunin, Yu.A. and Perminov, V.S., Ros. Vest. Perinat. i Ped., 1993, vol. 38, no. 2, p. 20–24.Google Scholar
  8. 8.
    Klassifikatsiya posledstvii perinatal’nykh porazhenii nervnoi sistemy u novorozhdennykh. Metodicheskie rekomendatsii (Classification of Consequences of Perinatal Lesions of Nervous System in Newborns. Methodical Recommendations), 2005, RASPM.Google Scholar
  9. 9.
    Sehba, F.A., Hou, J., Pluta, R.M., and Zhang, J.H., Prog. Neurobiol., 2012, vol. 97, no. 1, pp. 14–37.PubMedCrossRefGoogle Scholar
  10. 10.
    Sehba, F.A., Pluta, R.M., and Zhang, J.H., Mol. Neurobiol., 2011, vol. 43, no. 1, pp. 27–40.PubMedCrossRefGoogle Scholar
  11. 11.
    Bradbury, M., The Concept of a Blood-Brain Barrier, New York: John Wiley & Sons, 1979.Google Scholar
  12. 12.
    Ashmarin, I.P. and Stukalov, P.V., Neirokhimiya (Neurochemistry), 1996.Google Scholar
  13. 13.
    Chekhonin, V.P., Dmitrieva, T.B., and Zhirkov, Yu.A., Immunokhimicheskii analiz neirospetsificheskikh antigenov (Immunoenzymatic Analysis of the Neuronspecific Antigens), Moscow, 2000.Google Scholar
  14. 14.
    Chekhonin, V.P., Lebedev, S.V., Blinov, D.V., Gurina, O.I., Semenova, A.V., Lazarenko, I.P., Petrov, S.V., Ryabukhin, I.A., Rogatkin, S.O., and Volodin, N.N., Voprosy Ginekologii, Akusherstva i Perinatologii, 2004, vol. 3, no. 2, pp. 50–56.Google Scholar
  15. 15.
    Eng, L.F., Ghirnikar, R.S., and Lee, Y.L., Neurochem. Res., nos. 9–10, pp. 1439–1451.Google Scholar
  16. 16.
    Chekhonin, V.P., Gurina, O.I., and Dmitrieva, T.B. Monoklonal’nye antitela k neirospetsificheskim belkam (The Monoclonal Antibodies to Neuron-specific Proteins), Moscow: Meditsina, 2007.Google Scholar
  17. 17.
    Siegel, G. and Schratt, G., Identification of Novel MicroRNA Regulatory Proteins in Neurons Using RNAi-Based Screening. Cited February 13, 2012.Google Scholar
  18. 18.
    Steinacker, P., Aitken, A., and Otto, M., Semin. Cell Dev. Biol., 2011, vol. 22, no. 7, pp. 696–704.PubMedCrossRefGoogle Scholar
  19. 19.
    Einav, S., Kaufman, N., Algur, N., and Kark, J.D., J. Am. Coll. Cardiol, 2012, vol. 60, no. 4, pp. 304–311.PubMedCrossRefGoogle Scholar
  20. 20.
    Palmio, J., Huuhka, M., Laine, S., Huhtala, H., Peltola, J., Leinonen, E., Suhonen, J., and Keranen, T., Psychiatry Res., vol. 177, nos. 1–2, pp. 97–100.Google Scholar
  21. 21.
    Shinozaki, K., Oda, S., Sadahiro, T., Nakamura, M., Abe, R., Nakada, T.A., Nomura, F., Nakanishi, K., Kitamura, N., and Hirasawa, H., Resuscitation, 2009, vol. 80, no. 8, pp. 870–875.PubMedCrossRefGoogle Scholar
  22. 22.
    Streitbürger, D.P., Arelin, K., and Kratzsch, J., Thiery J., Steiner J., Villringer A., Mueller K., Schroeter M.L, PLoS One, 2012, vol. 7, no. 8, e43284.Google Scholar
  23. 23.
    Ngankam, L., Kazantseva, N.V., and Gerasimova, M.M., Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova, 2011, vol. 111, no. 7, pp. 61–65.PubMedGoogle Scholar
  24. 24.
    Ennen, C.S., Huisman, T.A., Savage, W.J., Northington, F.J., Jennings, J.M., Everett, A.D., and Graham, E.M., Am. J. Obstet. Gynecol., 2011, vol. 205, no. 3, pp. 251–257.PubMedCrossRefGoogle Scholar
  25. 25.
    Middeldorp, J. and Hol, E.M., Prog. Neurobiol., 2011, vol. 93, no. 3, pp. 421–433.PubMedCrossRefGoogle Scholar
  26. 26.
    Schiff, L., Hadker, N., Weiser, S., and Rausch, C., Mol. Diagn. Ther., 2012, vol. 16, no. 2, pp. 79–92.PubMedCrossRefGoogle Scholar
  27. 27.
    Ramaswamy, V., Horton, J., Vandermeer, B., Buscemi, N., Miller, S., and Yager, J., Pediatr. Neurol., 2009, vol. 40, no. 3, pp. 215–226.PubMedCrossRefGoogle Scholar
  28. 28.
    Oh, S.H., Lee, J.G., Na, S.J., Park, J.H., Choi, Y.C., and Kim, W.J., Arch. Neurol., 2003, vol. 60, no. 1, pp. 37–41.PubMedCrossRefGoogle Scholar
  29. 29.
    Paulus, W., Acta. Neuropathol., 2009, vol. 118, no. 5, pp. 603–604.PubMedCrossRefGoogle Scholar
  30. 30.
    Thomberg, E., Thiringer, K., Hagberg, H., and Kjellmer, I., Arch. Dis. Child. Fetal. Neonatal., 1995, no. 72, pp. 39–42.Google Scholar
  31. 31.
    Kamphuis, W., Mamber, C., Moeton, M., Kooijman, L., Sluijs, J.A., Jansen, A.H., Verveer, M., de Groot, L.R., Smith, V.D., Rangarajan, S., Rodriguez, J.J., Orre, M., and Hol, E.M., PLoS One, 2012, vol. 7, no. 8, e42823.PubMedCrossRefGoogle Scholar
  32. 32.
    Rai, A., Maurya, S.K., Sharma, R., and Ali, S., Toxicol. Mech. Methods, 2012. doi: 10.3109/15376516.2012.721809.Google Scholar
  33. 33.
    van den Berge, S.A., Middeldorp, J., Zhang, C.E., Curtis, M.A., Leonard, B.W., Mastroeni, D., Voorn, P., van de Berg, W.D., Huitinga, I., and Hol, E.M., Aging Cell, 2010, vol. 9, no. 3, pp. 313–326.PubMedCrossRefGoogle Scholar
  34. 34.
    Di Domenico, F., Coccia, R., Butterfield, D.A., and Perluigi, M., 2011, vol. 1814, no. 12, pp. 1785–1795.Google Scholar
  35. 35.
    Mukhtarova, S.N., Meditsinskie Novosti Gruzii, 2010, vol. 4, no. 181, pp. 49–54.Google Scholar
  36. 36.
    Nagdyman, N., Kömen, W., Ko, H., Muller, C., and Obladen, M., Pediatric Research, 2001, vol. 49, no. 4, pp. 133–139.CrossRefGoogle Scholar
  37. 37.
    Berger, R., Pierce, M., Wisnievski, S., Adelson, P., Clark, R., Ruppel, R., and Kochanek, P., Pediatrics, 2002, vol. 109, no. 2, pp. 34–38.CrossRefGoogle Scholar
  38. 38.
    Clark, R., Kochalek, P., and Adelson, P., J. Pediatr., 2000, no. 137, pp. 197–204.Google Scholar
  39. 39.
    Elimian, A., Figueroa, R., Verma, U., Visintainer, P., Sehgal, P., and Tejani, N., Obst. Gynecol., 1998, vol. 92, no. 1, pp. 546–555.CrossRefGoogle Scholar
  40. 40.
    Garcia-Alix, A., Cabanas, F., Pellicer, A., Hernanz, A., Stiris, T.A., and Quero, J., Pediatrics, 1994, no. 93, pp. 234–240.Google Scholar
  41. 41.
    Blennow, M., Savman, K., Ilves, P., Thoresen, M., and Rosengren, L., Acta. Paediatr., 2001, no. 90, pp. 1171–1175.Google Scholar
  42. 42.
    Greishen, G., Biol. Neonate, 1992, no. 62, pp. 243–247.Google Scholar
  43. 43.
    Levene, M., Biol Neonate, 1992, no. 62, pp. 248–251.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Pirogov National Research Medical UniversityMoscowRussia
  2. 2.MoscowRussia

Personalised recommendations