Neurotrophins: The therapeutic potential and concept of minipeptides

Abstract

Neurotrophins belong to a family of polypeptides that exert control over many aspects of the survival, development, and functioning of structures within the central and peripheral nervous system. Neurotrophins, the nerve growth factor (NGF), the brain derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), as well as extracellular tyrosine kinase receptors (TrkA, TrkB, and TrkC) are specific targets for therapeutic intervention during different diseases. All these neurotrophins also bind to the p75 receptor, which has many functions depending on the type of cell where it is present. The diversity of neurotrophin effects is determined by ligand-receptor binding and the type of signaling responses that are specific for this interaction. NGF and other neurotrophins are involved in many pathological conditions. It has been shown that an insufficient level of neurotrophins in certain brain structures may be not only an initial cause of Alzheimer’s disease but also may be typical for cerebrovascular dysfunction, brain trauma, cognitive impairments, etc. The therapeutic potential of neurotrophins has been shown in many studies in the last decade but the effectiveness of neurotrophic therapy is limited by the poor diffusion of molecules across the blood-brain barrier and toxic adverse effects. The solution to this problem may be the creation of minipeptides and peptidomimetics that affect the activity of tyrosine-kinase receptors. Some of these structures are combinations of cyclic pentapeptides that facilitate interaction with Trk receptors and exert neuroprotective activity. In this review, we discuss the clinical and experimental data on the results of an alternative strategy that uses these peptidomimetics. These compounds comprise a new group of perspective agents in the therapy of neurodegenerative disorders.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Cohen, S., Levi-Montalcini, R., and Hamburger, V., Proc. Natl. Acad. Sci. USA, vol. 40, pp. 1014–1018.

  2. 2.

    Levi-Montalcini, R., EMBO J., 1987, vol. 6, pp. 1145–1154.

    PubMed  CAS  Google Scholar 

  3. 3.

    Al-Shawi, R., Hafner, A., Chun, S., Raza, S., Crutcher, K., Thrasivoulou, C., Simons, P., and Cowen, T., Ann. New York Acad. Sci., 2007, vol. 1119.

  4. 4.

    Yoshii, A. and Constantine-Paton, M., Dev. Neurobiol., 2010, vol. 70, pp. 304–322.

    PubMed  CAS  Google Scholar 

  5. 5.

    Cunningham, M.E., Stephens, R.M., Kaplan, D.R., and Greene, L.A., J. Biol. Chem., 1997, vol. 272, pp. 10957–10967.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Crowder, R.J. and Freeman, R.S., J. Neurosci., 1998, vol. 18, pp. 2933–2943.

    PubMed  CAS  Google Scholar 

  7. 7.

    Casaccia-Bonnefil, P., Kong, H., and Chao, M.V., Cell Death Differ., 1998, vol. 5, pp. 357–364.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Roux, P.P. and Barker, P.A., Prog. Neurobiol., 2002, vol. 67, pp. 203–233.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Gomazkov, O.A., Starenie mozga i neirotroficheskaya terapiya (Brain Aging and Neurotrophic Therapy), Moscow: IKAR, 2011.

    Google Scholar 

  10. 10.

    Zhang, H.T., Li, L.Y., Zhou, X.L., and Song, X.B., J. Histochem. Cytochem., 2007, vol. 55, pp. 1–19.

    PubMed  Article  Google Scholar 

  11. 11.

    Cooper, J.D., Lindholm, D., and Sofroniew, M.V., Neuroscience, 1994, vol. 62, pp. 625–629.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Schindowski, K., Belarbi, K., and Bue, L., Genes Brain Behav., 2008, vol. 7, pp. 43–56.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Muresanu, D., Libripress. Bucuresti, 2003, p. 462.

  14. 14.

    Mattson, M.P., Lovell, M.A., Furukawa, K., Markesbery, W.R., J. Neurochem., 1995, vol. 65, pp. 1740–1751.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Korte, M., Carroll, P., Wolf, E., Brem, G., Thoenen, H., and Bonhoeffer, T., Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 8856–8860.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Figurov, A., Pozzo-Miller, L.D., Olafsson, P., Wang, T., and Lu, B., Nature, 1996, vol. 381, pp. 706–709.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Liao, L., Pilotte, J., Xu, T., Wong, C.C., Edelman, G.M., Vanderklish, P., and Yates, J.R., 3rd, J. Proteome Res., 2007, vol. 6, pp. 1059–1071.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Paban, V., Chambon, C., Manrique, C., Touzet, C., and Alescio-Lautier, B., Neurobiol. Aging, 2011, vol. 32, pp. 470–485.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Scharfman, H., Goodman, J., Macleod, A., Phani, S., Antonelli, C., and Croll, S., Exp. Neurol., 2005, vol. 192, pp. 348–356.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Bernabeu, R.O. and Longo, F.M., BMC Neurosci., 2010, vol. 11, p. 136.

  21. 21.

    Islam, O., Loo, T.X., and Heese, K., Curr. Neurovasc. Res., 2009, vol. 6, pp. 42–53.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Teramoto, T., Qiu, J., Plumier, J.C., and Moskowitz, M.A., J. Clin. Invest., 2003, vol. 111, pp. 1125–1132.

    PubMed  CAS  Google Scholar 

  23. 23.

    Lee, H.J., Kim, K.S., Park, I.H., and Kim, S.U., PLoS One, 2007, vol. 2.

  24. 24.

    Lee, H.J., Lim, I.J., Lee, M.C., and Kim, S.U., J. Neurosci. Res., 2010, vol. 88, pp. 3282–3294.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Gu, S., Huang, H., Bi, J., Yao, Y., and Wen, T., Brain Res., 2009, vol. 1257, pp. 1–9.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Ferrer, I., Krupinski, J., Goutan, E., Mart, E., Ambrosio, S., and Arenas, E., Acta Neuropathol., 2001, vol. 101, pp. 229–238.

    PubMed  CAS  Google Scholar 

  27. 27.

    Schmidt-Kastner, R., Truettner, J., Lin, B., Zhao, W., Saul, I., Busto, R., and Ginsberg, M.D., Brain Res. Mol. Brain Res., 2001, vol. 92, pp. 157–166.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Ferrer, I., Ballabriga, J., Mart, E., Prez, E., Alberch, J., and Arenas, E., Brain. Pathol., 1998, vol. 8, pp. 253–261.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Larsson, E., Nanobashvili, A., Kokaia, Z., and Lindvall, O., J. Cereb. Blood Flow Metab., 1999, vol. 19, pp. 1220–1228.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Schäbitz, W.R., Steigleder, T., Cooper-Kuhn, C.M., Schwab, S., Sommer, C., Schneider, A., and Kuhn, H.G., Stroke, 2007, vol. 38, pp. 2165–2172.

    PubMed  Article  Google Scholar 

  31. 31.

    Takeshima, Y., Nakamura, M., Miyake, H., Tamaki, R., Inui, T., Horiuchi, K., Wajima, D., and Nakase, H., Neurosurgery, 2011.

  32. 32.

    Schaub, R.T., Anders, D., Golz, G., Ghringer, K., and Hellweg, R., Am. J. Psychiatry, 2002, vol. 159, pp. 1227–1229.

    PubMed  Article  Google Scholar 

  33. 33.

    Capsoni, S., Ugolini, G., Comparini, A., Ruberti, F., Berardi, N., and Cattaneo, A., Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 6826–6831.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Fahnestock, M., Michalski, B., Xu, B., and Coughlin, M.D., Mol. Cell Neurosci., 2001, vol. 18, pp. 210–220.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Connor, B., Young, D., Lawlor, P., Gai, W., Waldvogel, H., Faull, R.L., and Dragunow, M., Brain Res. Mol. Brain Res., 1996, vol. 1, pp. 1–17.

    Article  Google Scholar 

  36. 36.

    Boissiere, F., Faucheux, B., Ruberg, M., Agid, Y., Hirsch, E.C., Exp. Neurol., 1997, vol. 145, pp. 245252.

    Article  Google Scholar 

  37. 37.

    Capsoni, S., Tiveron, C., Vignone, D., Amato, G., and Cattaneo, A., Proc. Natl. Acad. Sci. USA, 2010, vol. 107, pp. 12299–12304.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Frade, J.M. and López-Sánchez, N., Cell Cycle, 2010, vol. 9, pp. 1934–1941.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Levy, Y.S., Gilgun-Sherki, Y., Melamed, E., and Offen, D., Biodrugs, 2005, vol. 19, pp. 97–127.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Garzon, D., Yu, G., and Fahnestock, M., J. Neurochem., no. 5, p. 82.

  41. 41.

    Hock, C., Heese, K., Hulette, C., Rosenberg, C., and Otten, U., Arch. Neurol., 2000, vol. 57, pp. 846–851.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Dawbarn, D. and Allen, S.J., Neuropathol. Appl. Neurobiol., 2003, vol. 29, pp. 211–230.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Enciu, A.M., Nicolescu, M.I., Manole, C.G., Mureanu, D.F., Popescu, L.M., and Popescu, B.O., BMC Neurol., 2011, vol. 11, p. 75.

  44. 44.

    Hock, C., Drasch, G., Golombowski, S., Mller-Spahn, F., Willershausen-Znnchen, B., Schwarz, P., Hock, U., Growdon, J.H., and Nitsch, R.M., J. Neural. Transm., 1998, vol. 105, pp. 59–68.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Higgins, G.A. and Mufson, E.J., Exper. Neurol., 1989, vol. 106, pp. 222–231.

    Article  CAS  Google Scholar 

  46. 46.

    Laske, C., Leyhe, T., Stransky, E., Hoffmann, N., Fallgatter, A.J., and Dietzsch, J., Int. J. Neuropsychopharmacol., 2011, vol. 14, pp. 1147–1155.

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Laske, C., Stransky, E., Leyhe, T., Eschweiler, G.W., Wittorf, A., Richartz, E., Bartels, M., Buchkremer, G., and Schott, K., J. Neural. Transm., 2006, vol. 113, pp. 1217–1224.

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Dawbarn, D. and Allen, S.J., Neuropathol. Appl. Neurobiol., 2003, vol. 29, pp. 211–230.

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Tong, M., Dong, M., and de la Monte, S.M., J. Alzheimers Dis., 2009, vol. 16, pp. 585–599.

    PubMed  CAS  Google Scholar 

  50. 50.

    Peng, S., Garzon, D.J., Marchese, M., Klein, W., Ginsberg, S.D., Francis, B.M., Mount, H.T., Mufson, E.J., Salehi, A., and Fahnestock, M., J. Neurosci., 2009, vol. 29, pp. 9321–9329.

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Counts, S.E. and Mufson, E.J., J. Neuropathol. Exp. Neurol., 2005, vol. 64, pp. 263–272.

    PubMed  CAS  Google Scholar 

  52. 52.

    Fahnestock, M., Michalski, B., Xu, B., and Coughlin, M.D., Mol. Cell. Neurosci., 2001, vol. 18, pp. 210–220.

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Freude, S., Schilbach, K., and Schubert, M., Curr. Alzheimer Res., 2009, vol. 6, pp. 213–223.

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Moloney, A.M., Griffin, R.J., Timmons, S., O’Connor, R., Ravid, R., and O’Neill, C., Neurobiol. Aging, 2010, vol. 31, pp. 224–243.

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Price, R.D., Milne, S.A., Sharkey, J., and Matsuoka, N., Pharm. Therap., vol. 115, pp. 292–306.

  56. 56.

    Longo, F.M., Manthorpe, M., Xie, Y.M., and Varon, S., J. Neurosci. Res., 1997, vol. 48, pp. 1–17.

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Ibáñez, C.F., Ebendal, T., and Persson, H., EMBO J., 1991, vol. 10, pp. 2105–2120.

    PubMed  Google Scholar 

  58. 58.

    Hughes, A.L., Messineo-Jones, D., Lad, S.P., and Neet, K.E., J. Neurosci. Res., 2001, vol. 63, pp. 10–19.

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Jang, S.W., Okada, M., and Sayeed, I., Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 16329–16334.

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Pehar, M., Cassina, P., Vargas, M.R., et al., Eur. J. Neurosci., 2006, vol. 24, pp. 1575–1580.

    PubMed  Article  Google Scholar 

  61. 61.

    Bruno, M.A., Clarke, P.B., Seltzer, A., Quirion, R., Burgess, K., Cuello, A.C., Saragovi, H.U., J. Neurosci., 2004, vol. 24, pp. 8009–8018.

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Stranahan, A.M., Zhou, Y., Martin, B., and Maudsley, S., Curr. Med. Chem., 2009, vol. 16, p. 4668.

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Yaar, M., Zhai, S., Panova, I., Fine, R.E., Eisenhauer, P.B., Blusztajn, J.K., Lopez-Coviella, I., and Gilchrest, B.A., Neuropathol. Appl. Neurobiol., 2007, vol. 33, pp. 533–543.

    PubMed  CAS  Google Scholar 

  64. 64.

    Cazorla, M., Prémont, J., Mann, A., Girard, N., Kellendonk, C., and Rognan, D., J. Clin. Invest., 2011, vol. 121, pp. 1846–1857.

    PubMed  Article  CAS  Google Scholar 

  65. 65.

    Massa, S.M., Yang, T., Xie, Y., Shi, J., Bilgen, M., Joyce, J.N., Nehama, D., Rajadas, J., and Longo, F.M., J. Clin. Invest., 2010, vol. 120, pp. 1774–1785.

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Mahapatra, S., Mehta, H., Woo, S.B., and Neet, K.E., J. Biol. Chem., 2009, vol. 284, pp. 33600–33613.

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Ostrovskaya, R.U., Gudasheva, T.A., Tsaplina, A.P., Vakhitova, Yu.V., Salingareeva, M.N., Yamidanov, R.S., and Seredenin, S.B., Byull. Eksp. Biol. Med., 2008, vol. 148, no. 3, pp. 334–337.

    Article  Google Scholar 

  68. 68.

    Shin, M.K., Kim, H.G., and Kim, K.L., J. Neurochem., 2011, vol. 116, pp. 205–216.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. A. Gomazkov.

Additional information

Original Russian Text © O.A. Gomazkov, 2012, published in Neirokhimiya, 2012, Vol. 29, No. 3, pp. 189–199.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gomazkov, O.A. Neurotrophins: The therapeutic potential and concept of minipeptides. Neurochem. J. 6, 163–172 (2012). https://doi.org/10.1134/S1819712412030075

Download citation

Keywords

  • neurotrophins
  • neuroprotection therapy
  • receptors
  • neurodegeneration
  • minipeptides
  • peptidomimetics