Advertisement

Neurochemical Journal

, Volume 6, Issue 3, pp 163–172 | Cite as

Neurotrophins: The therapeutic potential and concept of minipeptides

  • O. A. GomazkovEmail author
Review Articles

Abstract

Neurotrophins belong to a family of polypeptides that exert control over many aspects of the survival, development, and functioning of structures within the central and peripheral nervous system. Neurotrophins, the nerve growth factor (NGF), the brain derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), as well as extracellular tyrosine kinase receptors (TrkA, TrkB, and TrkC) are specific targets for therapeutic intervention during different diseases. All these neurotrophins also bind to the p75 receptor, which has many functions depending on the type of cell where it is present. The diversity of neurotrophin effects is determined by ligand-receptor binding and the type of signaling responses that are specific for this interaction. NGF and other neurotrophins are involved in many pathological conditions. It has been shown that an insufficient level of neurotrophins in certain brain structures may be not only an initial cause of Alzheimer’s disease but also may be typical for cerebrovascular dysfunction, brain trauma, cognitive impairments, etc. The therapeutic potential of neurotrophins has been shown in many studies in the last decade but the effectiveness of neurotrophic therapy is limited by the poor diffusion of molecules across the blood-brain barrier and toxic adverse effects. The solution to this problem may be the creation of minipeptides and peptidomimetics that affect the activity of tyrosine-kinase receptors. Some of these structures are combinations of cyclic pentapeptides that facilitate interaction with Trk receptors and exert neuroprotective activity. In this review, we discuss the clinical and experimental data on the results of an alternative strategy that uses these peptidomimetics. These compounds comprise a new group of perspective agents in the therapy of neurodegenerative disorders.

Keywords

neurotrophins neuroprotection therapy receptors neurodegeneration minipeptides peptidomimetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cohen, S., Levi-Montalcini, R., and Hamburger, V., Proc. Natl. Acad. Sci. USA, vol. 40, pp. 1014–1018.Google Scholar
  2. 2.
    Levi-Montalcini, R., EMBO J., 1987, vol. 6, pp. 1145–1154.PubMedGoogle Scholar
  3. 3.
    Al-Shawi, R., Hafner, A., Chun, S., Raza, S., Crutcher, K., Thrasivoulou, C., Simons, P., and Cowen, T., Ann. New York Acad. Sci., 2007, vol. 1119.Google Scholar
  4. 4.
    Yoshii, A. and Constantine-Paton, M., Dev. Neurobiol., 2010, vol. 70, pp. 304–322.PubMedGoogle Scholar
  5. 5.
    Cunningham, M.E., Stephens, R.M., Kaplan, D.R., and Greene, L.A., J. Biol. Chem., 1997, vol. 272, pp. 10957–10967.PubMedCrossRefGoogle Scholar
  6. 6.
    Crowder, R.J. and Freeman, R.S., J. Neurosci., 1998, vol. 18, pp. 2933–2943.PubMedGoogle Scholar
  7. 7.
    Casaccia-Bonnefil, P., Kong, H., and Chao, M.V., Cell Death Differ., 1998, vol. 5, pp. 357–364.PubMedCrossRefGoogle Scholar
  8. 8.
    Roux, P.P. and Barker, P.A., Prog. Neurobiol., 2002, vol. 67, pp. 203–233.PubMedCrossRefGoogle Scholar
  9. 9.
    Gomazkov, O.A., Starenie mozga i neirotroficheskaya terapiya (Brain Aging and Neurotrophic Therapy), Moscow: IKAR, 2011.Google Scholar
  10. 10.
    Zhang, H.T., Li, L.Y., Zhou, X.L., and Song, X.B., J. Histochem. Cytochem., 2007, vol. 55, pp. 1–19.PubMedCrossRefGoogle Scholar
  11. 11.
    Cooper, J.D., Lindholm, D., and Sofroniew, M.V., Neuroscience, 1994, vol. 62, pp. 625–629.PubMedCrossRefGoogle Scholar
  12. 12.
    Schindowski, K., Belarbi, K., and Bue, L., Genes Brain Behav., 2008, vol. 7, pp. 43–56.PubMedCrossRefGoogle Scholar
  13. 13.
    Muresanu, D., Libripress. Bucuresti, 2003, p. 462.Google Scholar
  14. 14.
    Mattson, M.P., Lovell, M.A., Furukawa, K., Markesbery, W.R., J. Neurochem., 1995, vol. 65, pp. 1740–1751.PubMedCrossRefGoogle Scholar
  15. 15.
    Korte, M., Carroll, P., Wolf, E., Brem, G., Thoenen, H., and Bonhoeffer, T., Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 8856–8860.PubMedCrossRefGoogle Scholar
  16. 16.
    Figurov, A., Pozzo-Miller, L.D., Olafsson, P., Wang, T., and Lu, B., Nature, 1996, vol. 381, pp. 706–709.PubMedCrossRefGoogle Scholar
  17. 17.
    Liao, L., Pilotte, J., Xu, T., Wong, C.C., Edelman, G.M., Vanderklish, P., and Yates, J.R., 3rd, J. Proteome Res., 2007, vol. 6, pp. 1059–1071.PubMedCrossRefGoogle Scholar
  18. 18.
    Paban, V., Chambon, C., Manrique, C., Touzet, C., and Alescio-Lautier, B., Neurobiol. Aging, 2011, vol. 32, pp. 470–485.PubMedCrossRefGoogle Scholar
  19. 19.
    Scharfman, H., Goodman, J., Macleod, A., Phani, S., Antonelli, C., and Croll, S., Exp. Neurol., 2005, vol. 192, pp. 348–356.PubMedCrossRefGoogle Scholar
  20. 20.
    Bernabeu, R.O. and Longo, F.M., BMC Neurosci., 2010, vol. 11, p. 136.Google Scholar
  21. 21.
    Islam, O., Loo, T.X., and Heese, K., Curr. Neurovasc. Res., 2009, vol. 6, pp. 42–53.PubMedCrossRefGoogle Scholar
  22. 22.
    Teramoto, T., Qiu, J., Plumier, J.C., and Moskowitz, M.A., J. Clin. Invest., 2003, vol. 111, pp. 1125–1132.PubMedGoogle Scholar
  23. 23.
    Lee, H.J., Kim, K.S., Park, I.H., and Kim, S.U., PLoS One, 2007, vol. 2.Google Scholar
  24. 24.
    Lee, H.J., Lim, I.J., Lee, M.C., and Kim, S.U., J. Neurosci. Res., 2010, vol. 88, pp. 3282–3294.PubMedCrossRefGoogle Scholar
  25. 25.
    Gu, S., Huang, H., Bi, J., Yao, Y., and Wen, T., Brain Res., 2009, vol. 1257, pp. 1–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Ferrer, I., Krupinski, J., Goutan, E., Mart, E., Ambrosio, S., and Arenas, E., Acta Neuropathol., 2001, vol. 101, pp. 229–238.PubMedGoogle Scholar
  27. 27.
    Schmidt-Kastner, R., Truettner, J., Lin, B., Zhao, W., Saul, I., Busto, R., and Ginsberg, M.D., Brain Res. Mol. Brain Res., 2001, vol. 92, pp. 157–166.PubMedCrossRefGoogle Scholar
  28. 28.
    Ferrer, I., Ballabriga, J., Mart, E., Prez, E., Alberch, J., and Arenas, E., Brain. Pathol., 1998, vol. 8, pp. 253–261.PubMedCrossRefGoogle Scholar
  29. 29.
    Larsson, E., Nanobashvili, A., Kokaia, Z., and Lindvall, O., J. Cereb. Blood Flow Metab., 1999, vol. 19, pp. 1220–1228.PubMedCrossRefGoogle Scholar
  30. 30.
    Schäbitz, W.R., Steigleder, T., Cooper-Kuhn, C.M., Schwab, S., Sommer, C., Schneider, A., and Kuhn, H.G., Stroke, 2007, vol. 38, pp. 2165–2172.PubMedCrossRefGoogle Scholar
  31. 31.
    Takeshima, Y., Nakamura, M., Miyake, H., Tamaki, R., Inui, T., Horiuchi, K., Wajima, D., and Nakase, H., Neurosurgery, 2011.Google Scholar
  32. 32.
    Schaub, R.T., Anders, D., Golz, G., Ghringer, K., and Hellweg, R., Am. J. Psychiatry, 2002, vol. 159, pp. 1227–1229.PubMedCrossRefGoogle Scholar
  33. 33.
    Capsoni, S., Ugolini, G., Comparini, A., Ruberti, F., Berardi, N., and Cattaneo, A., Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 6826–6831.PubMedCrossRefGoogle Scholar
  34. 34.
    Fahnestock, M., Michalski, B., Xu, B., and Coughlin, M.D., Mol. Cell Neurosci., 2001, vol. 18, pp. 210–220.PubMedCrossRefGoogle Scholar
  35. 35.
    Connor, B., Young, D., Lawlor, P., Gai, W., Waldvogel, H., Faull, R.L., and Dragunow, M., Brain Res. Mol. Brain Res., 1996, vol. 1, pp. 1–17.CrossRefGoogle Scholar
  36. 36.
    Boissiere, F., Faucheux, B., Ruberg, M., Agid, Y., Hirsch, E.C., Exp. Neurol., 1997, vol. 145, pp. 245252.CrossRefGoogle Scholar
  37. 37.
    Capsoni, S., Tiveron, C., Vignone, D., Amato, G., and Cattaneo, A., Proc. Natl. Acad. Sci. USA, 2010, vol. 107, pp. 12299–12304.PubMedCrossRefGoogle Scholar
  38. 38.
    Frade, J.M. and López-Sánchez, N., Cell Cycle, 2010, vol. 9, pp. 1934–1941.PubMedCrossRefGoogle Scholar
  39. 39.
    Levy, Y.S., Gilgun-Sherki, Y., Melamed, E., and Offen, D., Biodrugs, 2005, vol. 19, pp. 97–127.PubMedCrossRefGoogle Scholar
  40. 40.
    Garzon, D., Yu, G., and Fahnestock, M., J. Neurochem., no. 5, p. 82.Google Scholar
  41. 41.
    Hock, C., Heese, K., Hulette, C., Rosenberg, C., and Otten, U., Arch. Neurol., 2000, vol. 57, pp. 846–851.PubMedCrossRefGoogle Scholar
  42. 42.
    Dawbarn, D. and Allen, S.J., Neuropathol. Appl. Neurobiol., 2003, vol. 29, pp. 211–230.PubMedCrossRefGoogle Scholar
  43. 43.
    Enciu, A.M., Nicolescu, M.I., Manole, C.G., Mureanu, D.F., Popescu, L.M., and Popescu, B.O., BMC Neurol., 2011, vol. 11, p. 75.Google Scholar
  44. 44.
    Hock, C., Drasch, G., Golombowski, S., Mller-Spahn, F., Willershausen-Znnchen, B., Schwarz, P., Hock, U., Growdon, J.H., and Nitsch, R.M., J. Neural. Transm., 1998, vol. 105, pp. 59–68.PubMedCrossRefGoogle Scholar
  45. 45.
    Higgins, G.A. and Mufson, E.J., Exper. Neurol., 1989, vol. 106, pp. 222–231.CrossRefGoogle Scholar
  46. 46.
    Laske, C., Leyhe, T., Stransky, E., Hoffmann, N., Fallgatter, A.J., and Dietzsch, J., Int. J. Neuropsychopharmacol., 2011, vol. 14, pp. 1147–1155.PubMedCrossRefGoogle Scholar
  47. 47.
    Laske, C., Stransky, E., Leyhe, T., Eschweiler, G.W., Wittorf, A., Richartz, E., Bartels, M., Buchkremer, G., and Schott, K., J. Neural. Transm., 2006, vol. 113, pp. 1217–1224.PubMedCrossRefGoogle Scholar
  48. 48.
    Dawbarn, D. and Allen, S.J., Neuropathol. Appl. Neurobiol., 2003, vol. 29, pp. 211–230.PubMedCrossRefGoogle Scholar
  49. 49.
    Tong, M., Dong, M., and de la Monte, S.M., J. Alzheimers Dis., 2009, vol. 16, pp. 585–599.PubMedGoogle Scholar
  50. 50.
    Peng, S., Garzon, D.J., Marchese, M., Klein, W., Ginsberg, S.D., Francis, B.M., Mount, H.T., Mufson, E.J., Salehi, A., and Fahnestock, M., J. Neurosci., 2009, vol. 29, pp. 9321–9329.PubMedCrossRefGoogle Scholar
  51. 51.
    Counts, S.E. and Mufson, E.J., J. Neuropathol. Exp. Neurol., 2005, vol. 64, pp. 263–272.PubMedGoogle Scholar
  52. 52.
    Fahnestock, M., Michalski, B., Xu, B., and Coughlin, M.D., Mol. Cell. Neurosci., 2001, vol. 18, pp. 210–220.PubMedCrossRefGoogle Scholar
  53. 53.
    Freude, S., Schilbach, K., and Schubert, M., Curr. Alzheimer Res., 2009, vol. 6, pp. 213–223.PubMedCrossRefGoogle Scholar
  54. 54.
    Moloney, A.M., Griffin, R.J., Timmons, S., O’Connor, R., Ravid, R., and O’Neill, C., Neurobiol. Aging, 2010, vol. 31, pp. 224–243.PubMedCrossRefGoogle Scholar
  55. 55.
    Price, R.D., Milne, S.A., Sharkey, J., and Matsuoka, N., Pharm. Therap., vol. 115, pp. 292–306.Google Scholar
  56. 56.
    Longo, F.M., Manthorpe, M., Xie, Y.M., and Varon, S., J. Neurosci. Res., 1997, vol. 48, pp. 1–17.PubMedCrossRefGoogle Scholar
  57. 57.
    Ibáñez, C.F., Ebendal, T., and Persson, H., EMBO J., 1991, vol. 10, pp. 2105–2120.PubMedGoogle Scholar
  58. 58.
    Hughes, A.L., Messineo-Jones, D., Lad, S.P., and Neet, K.E., J. Neurosci. Res., 2001, vol. 63, pp. 10–19.PubMedCrossRefGoogle Scholar
  59. 59.
    Jang, S.W., Okada, M., and Sayeed, I., Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 16329–16334.PubMedCrossRefGoogle Scholar
  60. 60.
    Pehar, M., Cassina, P., Vargas, M.R., et al., Eur. J. Neurosci., 2006, vol. 24, pp. 1575–1580.PubMedCrossRefGoogle Scholar
  61. 61.
    Bruno, M.A., Clarke, P.B., Seltzer, A., Quirion, R., Burgess, K., Cuello, A.C., Saragovi, H.U., J. Neurosci., 2004, vol. 24, pp. 8009–8018.PubMedCrossRefGoogle Scholar
  62. 62.
    Stranahan, A.M., Zhou, Y., Martin, B., and Maudsley, S., Curr. Med. Chem., 2009, vol. 16, p. 4668.PubMedCrossRefGoogle Scholar
  63. 63.
    Yaar, M., Zhai, S., Panova, I., Fine, R.E., Eisenhauer, P.B., Blusztajn, J.K., Lopez-Coviella, I., and Gilchrest, B.A., Neuropathol. Appl. Neurobiol., 2007, vol. 33, pp. 533–543.PubMedGoogle Scholar
  64. 64.
    Cazorla, M., Prémont, J., Mann, A., Girard, N., Kellendonk, C., and Rognan, D., J. Clin. Invest., 2011, vol. 121, pp. 1846–1857.PubMedCrossRefGoogle Scholar
  65. 65.
    Massa, S.M., Yang, T., Xie, Y., Shi, J., Bilgen, M., Joyce, J.N., Nehama, D., Rajadas, J., and Longo, F.M., J. Clin. Invest., 2010, vol. 120, pp. 1774–1785.PubMedCrossRefGoogle Scholar
  66. 66.
    Mahapatra, S., Mehta, H., Woo, S.B., and Neet, K.E., J. Biol. Chem., 2009, vol. 284, pp. 33600–33613.PubMedCrossRefGoogle Scholar
  67. 67.
    Ostrovskaya, R.U., Gudasheva, T.A., Tsaplina, A.P., Vakhitova, Yu.V., Salingareeva, M.N., Yamidanov, R.S., and Seredenin, S.B., Byull. Eksp. Biol. Med., 2008, vol. 148, no. 3, pp. 334–337.CrossRefGoogle Scholar
  68. 68.
    Shin, M.K., Kim, H.G., and Kim, K.L., J. Neurochem., 2011, vol. 116, pp. 205–216.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Orekhovich Institute of Biomedical ChemistryRussian Academy of Medical SciencesMoscowRussia
  2. 2.MoscowRussia

Personalised recommendations