Skip to main content
Log in

Possible mechanisms for the effects of neuromodulators on the perception of time intervals

  • Theoretical Articles
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

We propose possible mechanisms for the effects of neuromodulators on the perception of time on the basis of our hypothesis that estimation of intervals between sensory stimuli depends on the beat frequency of a “internal clock,” which is inversely proportional to the latency of reentering excitation of the neocortex. These effects are based on the modification of the efficacy of excitatory inputs to the cortical neurons, as well as inputs from the cortex to the striatum, which are necessary for the disinhibition of thalamic neurons by the basal ganglia and subsequent excitation of the cortex. The character of influence is determined by the concentration of neuromodulators, the types of receptors activated by them on neurons of the striatum and cortex, and the modulation rules. According to the proposed mechanism, an increase in the frequency of the “internal clock” and overestimation of the duration of intervals may result from treatment with dopaminergic drugs, agonists of dopamine D1 and D2 receptors, and opioids and cannabinoids, which promote an increase in the dopamine concentration, as well as antagonists of adenosine A1 and A2A and muscarinic M2 receptors, whose activation facilitates disinhibition of the thalamus by the basal ganglia. Antagonists of A1, M2, and D2 receptors, which prevent depression of excitatory inputs to neocortical pyramidal cells, also can increase the frequency of the “internal clock.” The activation of a large number of D2 receptors on the cortical pyramidal cells, which results from a considerable increase in dopamine concentration, like activation of cannabinoid CB1 receptors, should promote a decrease in the frequency of the “internal clock” and the underestimation of interval duration. The activation of D2 and M2 receptors on the GABAergic interneurons of the cortex under conditions of strong inhibition of pyramidal neurons may increase the beat frequency of the “internal clock.” The proposed mechanism helps to understand the causes of errors in time perception in neurological diseases and to explain the discrepancies in the results of studies on the effects of neuromodulators on the estimation of time. The hypothesis may be experimentally examined by treatment of the striatum or neocortex with agonists and antagonists of various types of receptors and measurement of the drug-induced changes in the interval between the first and second peaks in the distribution of latencies of responses of cortical neurons to sensory stimulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rammsayer, T., Int. J. Neurosci., 1990, vol. 53, nos. 2–4, pp. 111–120.

    Article  PubMed  CAS  Google Scholar 

  2. Carroll, C.A., O’Donnell, B.F., Shekhar, A., and Hetrick, W.P., Brain Cogn., 2009, vol. 71, no. 3, pp. 345–353.

    Article  PubMed  Google Scholar 

  3. Malapani, C., Deweer, B., and Gibbon, J., J. Cogn. Neurosci., 2002, vol. 14, no. 2, pp. 311–322.

    Article  PubMed  Google Scholar 

  4. Toplak, M.E., Rucklidge, J.J., Hetherington, R., John, S.C.F., and Tannock, R., J. Child. Psychol. Psychiatry, 2003, vol. 44, no. 6, pp. 888–903.

    Article  PubMed  CAS  Google Scholar 

  5. Meck, W.H., Cogn. Brain Res., 1996, vol. 3, nos. 3–4, pp. 227–242.

    Article  CAS  Google Scholar 

  6. Petry, N.M., Bickel, W.K., and Arnett, M., Addiction, 1998, vol. 93, no. 5, pp. 729–738.

    Article  PubMed  CAS  Google Scholar 

  7. Odum, A.L. and Ward, R.D., J. Exp. Anal. Behav., 2004, vol. 82, no. 2, pp. 197–212.

    Article  PubMed  Google Scholar 

  8. Rammsayer, T., NeuroQuantology, 2009, vol. 7, no. 1, pp. 103–113.

    Google Scholar 

  9. Coull, J.T., Vidal, F., Nazarian, B., and Macar, F., Science, 2004, vol. 303, no. 5663, pp. 1506–1508.

    Article  PubMed  CAS  Google Scholar 

  10. Coull, J.T., Nazarian, B., and Vidal, F., J. Cogn. Neurosci., 2008, vol. 20, no. 12, pp. 2185–2197.

    Article  PubMed  Google Scholar 

  11. Hinton, S.C. and Meck, W.H., Cogn. Brain Res., 2004, vol. 21, no. 2, pp. 171–182.

    Article  Google Scholar 

  12. Jahanshahi, M., Jones, C.R., Dirnberger, G., and Frith, C.D., J. Neurosci., 2006, vol. 26, no. 47, pp. 12266–12273.

    Article  PubMed  CAS  Google Scholar 

  13. Jin, D.Z., Fujii, N., and Graybiel, A.M., Proc. Natl. Acad. Sci. USA, 2009, vol. 106, no. 45, pp. 19156–19161.

    Article  PubMed  CAS  Google Scholar 

  14. Jones, C.R., Malone, T.J., Dirnberger, G., Edwards, M., and Jahanshahi, M., Brain Cogn., 2008, vol. 68, no. 1, pp. 30–41.

    Article  PubMed  Google Scholar 

  15. Matell, M.S. and Meck, W.H., Cog. Brain Res., 2004, vol. 21, no. 2, pp. 139–170.

    Article  Google Scholar 

  16. Meck, W.H., Penney, T.B., and Pouthas, V., Curr. Opin. Neurobiol., 2008, vol. 18.

  17. Sil’kis, I.G., Usp. Fiziol. Nauk, 2011, vol. 42, no. 2, pp. 41–56.

    PubMed  Google Scholar 

  18. Silkis, I.G., Biosystems, 1998, vol. 48, nos. 1–3, pp. 205–213.

    Article  PubMed  CAS  Google Scholar 

  19. Silkis, I., Biosystems, 2000, vol. 57, no. 3, pp. 187–196.

    Article  PubMed  CAS  Google Scholar 

  20. Silkis, I., Biosystems, 2001, vol. 59, no. 1, pp. 7–14.

    Article  PubMed  CAS  Google Scholar 

  21. Sil’kis, I.G., Neurosci. Behav. Physiol., 2003a, vol. 33, no. 6, pp. 529–541.

    Article  PubMed  Google Scholar 

  22. Hinton, S.C., Meck. W.H., and MacFall J.R, NeuroImage, 1996, vol. 3, no. Suppl. 1, p. 224.

    Article  Google Scholar 

  23. Sil’kis, I.G., Neurosci. Behav. Physiol., 2003b, vol. 33, pp. 379–386.

    Article  PubMed  Google Scholar 

  24. Silkis, I., Biosystems, 2007, vol. 89, nos. 1–3, pp. 227–235.

    Article  PubMed  Google Scholar 

  25. Matell, M.S., Bateson, M., and Meck, W.H., Psychopharmacology (Berl), 2006, vol. 188, no. 2, pp. 201–212.

    Article  CAS  Google Scholar 

  26. Zheng, P., Zhang, X.X., Bunney, B.S., and Shi, W.X., Neuroscience, 1999, vol. 91, no. 2, pp. 527–535.

    Article  PubMed  CAS  Google Scholar 

  27. Rammsayer, T.H., Neuropsychobiology, 1997, vol. 35, no. 1, pp. 36–45.

    Article  PubMed  CAS  Google Scholar 

  28. Lustig, C. and Meck, W.H., Brain Cogn, 2005, vol. 58, no. 1, pp. 9–16.

    Article  PubMed  Google Scholar 

  29. Davis, K.L., Kahn, R.S., Ko, G., and Davidson, M., Am. J. Psychiatry, 1991, vol. 148, no. 11, pp. 1474–1486.

    PubMed  CAS  Google Scholar 

  30. Waters, F. and Jablensky, A., Psychiatry Res., 2009, vol. 167, nos. 1–2, pp. 12–20.

    Article  PubMed  Google Scholar 

  31. Lee, K.-H., Bhaker, R.S., Mysore, A., Parks, R.W., Birkett, P.B.L., and Woodruff, P.W.R., Psychiatry Res., 2009, vol. 166, nos. 2–3, pp. 174–183.

    Article  PubMed  Google Scholar 

  32. Meck, W.H. and Benson, A.M., Brain Cogn., 2002, vol. 48, no. 1, pp. 195–211.

    Article  PubMed  Google Scholar 

  33. Rutschmann, J. and Rubinstein, L., J. Psychiatr. Res, 1996, vol. 4, no. 2, pp. 107–114.

    Article  Google Scholar 

  34. Seamans, J.K., Gorelova, N., Durstewitz, D., and Yang, C.R., J. Neurosci., 2001, vol. 21, no. 10, pp. 3628–3638.

    PubMed  CAS  Google Scholar 

  35. Xu, T.X. and Yao, W.D., Proc. Natl. Acad. Sci. USA, 2010, vol. 107, no. 37, pp. 16366–16371.

    Article  PubMed  CAS  Google Scholar 

  36. Ji, Y., Yang, F., Papaleo, F., Wang, H.X., Gao, W.J., Weinberger, D.R., and Lu, B., Proc. Natl. Acad. Sci. USA, 2009, vol. 106, no. 46, pp. 19593–19598.

    Article  PubMed  CAS  Google Scholar 

  37. Oda, S., Funato, H., Adachi-Akahane, S., Ito, M., Okada, A., Igarashi, H., Yokofujita, J., and Kuroda, M., Brain Res., 2010, vol. 1329, pp. 89–102.

    Article  PubMed  CAS  Google Scholar 

  38. Glausier, J.R., Khan, Z.U., and Muly, E.C., Cereb. Cortex, 2009, vol. 19, no. 8, pp. 1820–1834.

    Article  PubMed  Google Scholar 

  39. Kröner, S., Krimer, L.S., Lewis, D.A., and Barrionuevo, G., Cereb. Cortex, 2007, vol. 17, no. 5, pp. 1020–1032.

    Article  PubMed  Google Scholar 

  40. Svenningsson, P., Le Moine C., Kull B., Sunahara R., Bloch B., Fredholm B.B, Neuroscience, 1997, vol. 80, no. 4, pp. 1171–1185.

    Article  PubMed  CAS  Google Scholar 

  41. Yoshimura, H., Curr. Neuropharmacol., 2005, vol. 3, no. 4, pp. 309–316.

    Article  PubMed  CAS  Google Scholar 

  42. Ochiishi, T., Chen, L., Yukawa, A., Saitoh, Y., Sekino, Y., Arai, T., Nakata, H., and Miyamoto, H., J. Comp. Neurol., 1999, vol. 411, no. 2, pp. 301–316.

    Article  PubMed  CAS  Google Scholar 

  43. O’shaughnessy, C.T., Aram, J.A., and Lodge, D., Epilepsy Res., 1988, vol. 2, no. 5, pp. 294–301.

    Article  PubMed  Google Scholar 

  44. Terry, P., Doumas, M., Desai, R.I., and Wing, A.M., Psychopharmacol., 2009, vol. 202, no. 4, pp. 719–729.

    Article  CAS  Google Scholar 

  45. Martin, F.H. and Garfield, J., Biol. Psychol., 2006, vol. 71, no. 1, pp. 63–73.

    Article  PubMed  Google Scholar 

  46. Liu, T.T., Behzadi, Y., Restom, K., Uludag, K., Lu, K., Buracas, G.T., Dubowitz, D.J., and Buxton, R.B., Neuroimage, 2004, vol. 23, no. 4, pp. 1402–1413.

    Article  PubMed  Google Scholar 

  47. Gruber, R.P. and Block, R.A., Hum. Psychopharmacol., 2005, vol. 20, no. 4, pp. 275–285.

    Article  PubMed  CAS  Google Scholar 

  48. Ferre, S., Popoli, P., Tinner-Staines, B., and Fuxe, K., Neurosci. Let., 1996, vol. 208, no. 2, pp. 109–112.

    Article  CAS  Google Scholar 

  49. Botella, P., Bosch, F., Romero, F.J., and Parra, A., Hum. Psychopharmacol., 2001, vol. 16, no. 7, pp. 533–540.

    Article  PubMed  Google Scholar 

  50. Gruber, R.P. and Block, R.A., Hum. Psychopharmacol., 2003, vol. 18, no. 5, pp. 351–359.

    Article  PubMed  CAS  Google Scholar 

  51. Arushanyan, E.B., Baida, O.A., Mastyagin, S.S., Popova, A.P., and Shikina, I.B., Fiziol. Chel., 2003, vol. 29, no. 4, pp. 49–53.

    Google Scholar 

  52. Hicks, R.E., Prospective and Retrospective Judgments of Time: a Neurobehavioral Analysis. In Time, Action and Cognition: Towards Bridging the Gap, Macar F, Pouthas V, Friedman WJ (Eds). Kluwer Academic:, Dordrecht, Netherlands, 1992.

    Google Scholar 

  53. Stine, M.M., O’Connor, R.J., Yatko, B.R., Grunberg, N.E., and Klein, L.C., Hum. Psychopharmacol., 2002, vol. 17, no. 7, pp. 361–367.

    Article  PubMed  Google Scholar 

  54. Mrzljak, L., Levey, A.I., Belcher, S., and Goldman-Rakic, P.S., J. Comp. Neurol., 1998, vol. 390, no. 1, pp. 112–132.

    Article  PubMed  CAS  Google Scholar 

  55. Wang, L. and Yuan, L.L., J. Physiol., 2009, vol. 587.

  56. Antal, A., Kovanecz, I., and Bodis-Wollner, I., Physiol. Behav., 1994, vol. 56, no. 1, pp. 161–166.

    Article  PubMed  CAS  Google Scholar 

  57. Alcantara, A.A., Mrzljak, L., Jakab, R.L., Levey, A.I., Hersch, S.M., and Goldman-Rakic, P.S., J. Comp. Neurol., 2001, no. 4, pp. 445–460.

  58. Berz, S., Bttig, K., and Welzl, H., Physiol. Behav., 1992, vol. 51, no. 3, pp. 493–499.

    Article  PubMed  CAS  Google Scholar 

  59. Rouge-Pont, F., Usiello, A., Benoit-Marand, M., Gonon, F., Piazza, P.V., and Borrelli, E., J. Neurosci., 2002, vol. 22, no. 8, pp. 3293–3301.

    PubMed  CAS  Google Scholar 

  60. Bossong, M.G., van Berckel, B.N., Boellaard, R., Zuurman, L., Schuit, R.C., Windhorst, A.D., van Gerven, J.M., Ramsey, N.F., Lammertsma, A.A., and Kahn, R.S., Neuropsychopharmacology, 2009, vol. 34, no. 3, pp. 759–766.

    Article  PubMed  CAS  Google Scholar 

  61. Ward, R.D. and Odum, A.L., J. Exp. Anal. Behav., 2005, vol. 84, no. 3, pp. 401–415.

    Article  PubMed  Google Scholar 

  62. Odum, A.L. and Schaal, D.W., J. Exp. Anal. Behav., 2000, vol. 74, no. 2, pp. 229–243.

    Article  PubMed  CAS  Google Scholar 

  63. Glass, M., Dragunow, M., and Faull, R.L., Neuroscience, 1997, vol. 77, no. 2, pp. 299–318.

    Article  PubMed  CAS  Google Scholar 

  64. Han, C.J. and Robinson, J.K., Behav. Neurosci., 2001, vol. 115, no. 1, pp. 243–246.

    Article  PubMed  CAS  Google Scholar 

  65. Hicks, R.E., Gualtieri, C.T., Mayo, P.,Jr., and Perez-Reyes, M., Neuropsychobiology, 1984, vol. 12, no. 4, pp. 229–237.

    Article  PubMed  CAS  Google Scholar 

  66. Mathew, R.J., Wilson, W.H., Turkington, T.G., and Coleman, R.E., Brain Res., 1998, vol. 797, no. 2, pp. 183–189.

    Article  PubMed  CAS  Google Scholar 

  67. McClure, G.Y. and McMillan, D.E., J. Pharmacol. Exp. Ther., 1997, vol. 281, no. 3, pp. 1368–1380.

    PubMed  CAS  Google Scholar 

  68. Hobson, J.A., Stickgold, R., and Pace-Schott, E.F., Neuroreport, 1998, vol. 9, no. 3, pp. R1–R14.

    Article  PubMed  CAS  Google Scholar 

  69. Danilin, V.P and Latash, L.P., Zhurn. Vyssh. Nerv. Deyat., 1979, vol. 29, no. 3, pp. 502–509.

    CAS  Google Scholar 

  70. Huang, Z.L., Urade Y. and Hayaishi, O., Curr. Top. Med. Chem., 2011, vol. 11, no. 8, pp. 1047–1057.

    Article  PubMed  CAS  Google Scholar 

  71. Gottesmann, C. and Joncas, S., Sleep Res. Online, 2000, vol. 3, no. 1, pp. 1–4.

    PubMed  CAS  Google Scholar 

  72. Lena, I., Parrot, S., Deschaux, O., Muffat-Joly, S., Sauvinet, V., Renaud, B., Suaud-Chagny, M.F., and Gottesmann, C., J. Neurosci. Res., 2005, vol. 81, no. 6, pp. 891–899.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Sil’kis.

Additional information

Original Russian Text © I.G. Sil’kis, 2012, published in Neirokhimiya, 2012, Vol. 29, No. 2, pp. 162–170.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sil’kis, I.G. Possible mechanisms for the effects of neuromodulators on the perception of time intervals. Neurochem. J. 6, 144–152 (2012). https://doi.org/10.1134/S1819712412020109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712412020109

Keywords

Navigation