Advertisement

Neurochemical Journal

, Volume 4, Issue 1, pp 25–29 | Cite as

The effects of L-DOPA on glutamate dehydrogenase activity in the cerebral neurons of rats with different motor activities

  • A. V. SergutinaEmail author
Experimental Articles

Abstract

We studied the brains of stress-resistant Wistar rats and stress-prone August rats under normal conditions and after long-term L-DOPA administration. We performed a histochemical study of glutamate dehydrogenase (GDH) activity in layers III and V of the sensorimotor cortex, caudate nucleus, nucleus accumbens, and the CA3 field of the hippocampus. We did not find any differences in the GDH activity in the brain structures of the control Wistar and August rats with high or low levels of locomotion in the “open field” test. The activity of GDH was higher in layer V of the sensorimotor cortex and the caudate nucleus and lower in the hippocampus of August rats with low levels of locomotion as compared to Wistar rats with high locomotor activity. Administration of L-DOPA resulted in an increase in GDH activity in the sensorimotor cortex, caudate nucleus, and nucleus accumbens in Wistar rats with high levels of locomotion in the “open field” test. In Wistar rats with low locomotor activity, L-DOPA activated GDH in the hippocampus and decreased its concentration in the caudate nucleus and nucleus accumbens. In August rats with low levels of locomotion, L-DOPA increased GDH activity in the caudate nucleus and nucleus accumbens and decreased it in layer V of the sensorimotor cortex. The local specificity of GDH activity in the rat brain under normal conditions and during dopaminergic system hyperfunction are discussed.

Key words

glutamate dehydrogenase neuronal cytochemistry stress behavior in the “open field” test 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Popova, N.S. and Kachalova, L.M., in Funktsional’noe vzaimodeistvie struktur mozga: printsipy, varianty, modelirovanie (Functional Interaction of Brain Structures: Principles, Variants, and Modeling), Moscow, 2001.Google Scholar
  2. 2.
    Mosharova, I.V., Sapetskii, A.O., and Kositsin, N.S., Usp. Fiziol. Nauk, 2004, vol. 35, no. 1, pp. 20–42.PubMedGoogle Scholar
  3. 3.
    Newsholme, P., Procopio, J., Lima, M.M., et al., Cell. Boichem. Funct., 2003, vol. 21, no. 1, pp. 1–9.CrossRefGoogle Scholar
  4. 4.
    Mosharova, I.V., Neirokhimiya, 2001, vol. 18, no. 1, pp. 3–18.Google Scholar
  5. 5.
    Snyder, G.L., Allen, P.B., Flenberg, A.A., et al., J. Neurosci., 2000, vol. 20, no. 12, pp. 4480–4488.PubMedGoogle Scholar
  6. 6.
    Meldrum, B.S., J. Nutr., 2000, vol. 130, pp. 1007–1015.Google Scholar
  7. 7.
    Rubinstein, L.J., Klatso, J., and Miguel, J., J. Neuropathol. Exp. Neurol., 1962, vol. 21, pp. 116–136.CrossRefPubMedGoogle Scholar
  8. 8.
    Kononen, J., Koistinanaho, J., and Alho, H., Neurosci. Let., 1990, vol. 120, no. 1, pp. 105–108.CrossRefGoogle Scholar
  9. 9.
    Jakoi, E.R., Sombati, S., Gerwin, C., and De Lorenzo, R.J., Brain Res., 1992, vol. 582, pp. 282–290.CrossRefPubMedGoogle Scholar
  10. 10.
    Kaczmarek, L., Siedtecki, J.A., and Danysz, W., Brain Res., 1988, vol. 427, no. 2, pp. 183–186.PubMedGoogle Scholar
  11. 11.
    Sudakov, K.V., in Emotsional’nyi stress: teoreticheskie i klinicheskie aspekty (Emotional Stress: Theoretical and Clinical Aspects), Volgograd, 1997.Google Scholar
  12. 12.
    Meldrum, B.S., Ann. N.Y. Acad. Sci., 1995, vol. 757, pp. 492–505.CrossRefPubMedGoogle Scholar
  13. 13.
    Dugan, L.L. and Choi, D.W., in Basic Neurochemistry, New York, 1999, pp. 711–730.Google Scholar
  14. 14.
    Choi, D.W., Curr. Opin. Neurobiol., 1996, vol. 6, pp. 667–672.CrossRefPubMedGoogle Scholar
  15. 15.
    Meldrum, B.S., Ann. N.Y. Acad. Sci., 1995, vol. 757, pp. 492–505.CrossRefPubMedGoogle Scholar
  16. 16.
    Chevalier, G. and Deniau, J., Trends Neurosci., 1990, vol. 13, pp. 277–280.CrossRefPubMedGoogle Scholar
  17. 17.
    Simonov, P.V., Motivirovannyi mozg (Motivated Brain), Moscow: Nauka, 1987.Google Scholar
  18. 18.
    Simonov, P.V., Zhurn. Vyssh. Nerv. Deyat., 1991, vol. 41, no. 2, pp. 211–220.Google Scholar
  19. 19.
    Joel, D. and Weiner, I., in Conceptual Advances in Brain Research: Brain Dynamics and the Striatal Complex, Miller, R. and Wickens, J.R., Eds., Amsterdam: Harwood Acad. Publ., 1999, pp. 209–236.Google Scholar
  20. 20.
    Mink, J.W., Prog. Neurobiol., 1996, vol. 50, pp. 381–425.CrossRefPubMedGoogle Scholar
  21. 21.
    Penny, J.B. and Young, A.B., Ann. Rev. Neurosci., 1983, vol. 6, no. 1, pp. 73–97.CrossRefGoogle Scholar
  22. 22.
    Redgrave, P., Prescott, T.J., and Gurney, K., Neuroscience, 1999, vol. 89, no. 4, pp. 1009–1023.CrossRefPubMedGoogle Scholar
  23. 23.
    Arushanyan, E.B. and Otellin, V.A., in Khvostatoe yadro (The Caudate Nucleus), Leningrad: Nauka, 1976.Google Scholar
  24. 24.
    Popova, N.S., Sergutina, A.V., and Gershtein, L.M., in Materialy konferentsii “Plastichnost’ i strukturno-funktsional’naya vzaimosvyaz’ kory i podkorkovykh obrazovanii” (Proc. Conf. “Plasticity and Structural and Functional Interaction of the Cortex and Subcortical Structures), Moscow, 2003, p. 74.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Neurology Research CenterRussian Academy of Medical SciencesMoscowRussia
  2. 2.MoscowRussia

Personalised recommendations