Advertisement

Neurochemical Journal

, Volume 4, Issue 1, pp 14–18 | Cite as

Dopaminergic mechanisms underlying involvement of the prefrontal cortex and amygdala in acoustique startle modificftion during the action of stimulus associated with positive reinforcement

  • A. T. ProshinEmail author
  • Z. I. Storozheva
  • Yu. I. Aleksandrov
  • V. V. Sherstnev
Experimental Articles
  • 29 Downloads

Abstract

We studied the neurochemical mechanisms underlying the action of the conditioned stimulus associated with positive reinforcement on the amplitude of the acoustic startle response (ASR). To this aim, we injected a blocker of dopamine D2 receptors, sulpiride, into the rat medial prefrontal cortex or basolateral amygdala during the repeated procedure of ASR habituation. We have shown that, after the injection of saline to control rats into both the prefrontal cortex and amygdala, the change in ASR amplitude after an increase in illumination depends on the preliminary learning of a behavioral skill associated with a conditioned light signal. We found that if an acoustic signal appeared immediately after the change in the illumination the blockage of D2 dopamine receptors in the medial prefrontal cortex induced an increase in ASR amplitude. This disturbed the habituation of animals that were preliminarily subjected to associative training before this procedure. The injection of sulpiride into the basolateral amygdala during the increase in illumination did not affect the dynamics of ASR amplitude. This effect of the drug did not depend on the preliminary acquirement of positive conditioning to light. Our data suggest that D2 dopamine receptors of the medial prefrontal cortex, but not the basolateral amygdala, are involved in the reproduction of previously acquired skills associated with positive reinforcement under conditions of current defensive behavior.

Key words

D2 dopamine receptor medial prefrontal cortex basolateral amygdala training acoustic startle response 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nikols, D.G., Martin, A.R., Vallas, B.D., and Fuks, P. A., in Ot neirona k mozgu (From Neuron to the Brain), Moscow: Editorial URSS, 2003, pp. 306–307.Google Scholar
  2. 2.
    Proshin, A.T., Storozheva, Z.I., Sherstnev, V.V., and Aleksandrov, Yu.I., Psikhol. Zh., 2009, vol. 30, no. 4, pp. 56–64.Google Scholar
  3. 3.
    Simonov, P.V., Zhurn. Vyssh. Nerv. Deyat., 1997, vol. 47, no. 2, pp. 320–328.Google Scholar
  4. 4.
    Akirav, I. and Maroun, M., Neural. Plast, 2007, vol. 2007, ID 30873, pp. 1–11.CrossRefGoogle Scholar
  5. 5.
    Davis, M., Neural Mechanisms of the Startle Behavior, Eaten R.C., Ed., New York: Plenum Press, 1984, pp. 287–361.Google Scholar
  6. 6.
    Davis, M, in Perception, Memory and Emotion: Frontiers in Neuroscience, Ono, T., MsNaughton, B.L., Molotchnikoff, S., et al., Eds., Oxford: Elsevier, 1996, pp. 525–548.Google Scholar
  7. 7.
    Davis, M., Antoniadis, E.A., Amaral, D.G., and Winslow, J.T., Rev. Neurosci., 2008, vol. 19, nos. 2–3, pp. 171–185.PubMedGoogle Scholar
  8. 8.
    Dichter, G.S., Tomarken, A.J., and Baucom, B.R., Int. J. Psychophysiol., 2002, vol. 43, no. 2, pp. 191–196.CrossRefPubMedGoogle Scholar
  9. 9.
    Greba, Q., Gifkins, A., and Kokkinidis, L., Brain Res., 2001, vol. 899, nos. 1–2, pp. 218–226.CrossRefPubMedGoogle Scholar
  10. 10.
    Koch, M., Prog. Neurobiol., 1999, vol. 59, no. 2, pp. 107–128.CrossRefPubMedGoogle Scholar
  11. 11.
    Koch, M., Schmid, A., and Schnitzler, H.U., Psychopharmacology (Berl), 2000, vol. 152, no. 1, pp. 67–73.CrossRefGoogle Scholar
  12. 12.
    Lang, P.J., Bradley, M.M., and Cuthbert, B.N., Psychol. Rev, 1990, vol. 97, no. 3, pp. 377–395.CrossRefPubMedGoogle Scholar
  13. 13.
    Liang, K.C., Hu, S.J., and Chang, S.C., Chin. J. Physiol, 1996, vol. 39, no. 3, pp. 155–166.PubMedGoogle Scholar
  14. 14.
    Lonsdorf, T.B., Weike, A.I., Nikamo, P., et al, Psychol. Sci, 2009, vol. 20, no. 2, pp. 198–206.CrossRefPubMedGoogle Scholar
  15. 15.
    Maratos E.J., Dolan R.J., Morris J.S., et al., Neuropsychologia, 2001, vol. 39, no. 9, pp. 910–920.CrossRefPubMedGoogle Scholar
  16. 16.
    Pletnikov, M.V., Storozheva, Z.I., and Sherstnev, V.V., Pharmacol. Biochem. Behav., 1996, vol. 54, no. 1, pp. 93–98.CrossRefPubMedGoogle Scholar
  17. 17.
    Rezayof, A., Zarrindast, M.R., Sahraei, H., and HaeriRohani, A.H., Pharmacol. Biochem. Behav., 2002, vol. 74, no. 1, pp. 187–197.CrossRefPubMedGoogle Scholar
  18. 18.
    Rosen, J.B., Hitchcock, J.M., Miserendino, M.J., et al., J. Neurosci., 1992, vol. 12, no. 12, pp. 4624–4633.PubMedGoogle Scholar
  19. 19.
    Tupala, E., Hall, H., Mantere, T., Rasanen, P., et al., Neuroimage, 2003, vol. 19, no. 1, pp. 145–155.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. T. Proshin
    • 1
    • 3
    Email author
  • Z. I. Storozheva
    • 1
  • Yu. I. Aleksandrov
    • 2
  • V. V. Sherstnev
    • 1
  1. 1.Anokhin Institute of Normal PhysiologyRussian Academy of Medical SciencesMoscowRussia
  2. 2.Institute of PsychologyRussian Academy of SciencesMoscowRussia
  3. 3.MoscowRussia

Personalised recommendations