Neurochemical Journal

, Volume 4, Issue 1, pp 8–13 | Cite as

The α and β estrogen receptors in the human hypothalamus and basal forebrain in Alzheimer’s disease

  • T. A. IshuninaEmail author
Review Articles


Estrogen therapy in early menopause decreases the risk of Alzheimer’s disease. In contrast to the epidemiological and experimental evidence, no positive effects of estrogens on cognition were noted when estrogen therapy was prescribed to Alzheimer’s disease patients. We hypothesize that changes in canonical and alternatively spliced estrogen receptors (ERs) may play a role in these controversial findings. We found that nuclear expression of the ER α increases in the cholinergic structures of the basal forebrain and hypothalamic nuclei involved in cognitive functions and decreases in the hippocampus. Furthermore, certain brain areas in people over 50 years old had ER α splice variants with defective ligandand DNA-binding domains compromised AF1 activation function. The presence of different sets of classical and mutant estrogen receptors in different brain regions may account for the controversial effects of estrogens on cognitive functions in the climacteric period.

Key words

Alzheimer’s disease estrogen receptors splicing variants hypothalamus basal nucleus of Meynert 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersen, K., Launer, L.J., Dewey, M.E., et al., Neurology, 1999, vol. 53, pp. 1992–1997.PubMedGoogle Scholar
  2. 2.
    Letenneur, L., Launer, L.J., Andersen, K., et al., Amer. J. Epidemiol, 2000, vol. 151, pp. 1064–1071.Google Scholar
  3. 3.
    Babichev, V.N., Vestnik RAMN, 2005, no. 6, pp. 45–54.Google Scholar
  4. 4.
    Lyubarova, I.B., Tikhonovskaya, O.A., and Alifirova, V.M., Klinicheskaya Gerontologiya, 2007, vol. 13, no. 8, pp. 18–21.Google Scholar
  5. 5.
    Sergeeva, N.I., Dzeranova, L.K., and Marova, E.I., Klinich. Gerontologiya, 2002, vol. 8, no. 6, pp. 47–50.Google Scholar
  6. 6.
    Fedotova, Yu.O. and Sapronov, N.S., Usp. Fiziol. Nauk, 2007, vol. 38, no. 2, pp. 46–62.PubMedGoogle Scholar
  7. 7.
    Slooter, A.J.C., Bronzova, J., Witteman, J.C.M., et al., J. Neurol. Neurosurg. Psychiatry, 1999, vol. 67, pp. 779–781.CrossRefPubMedGoogle Scholar
  8. 8.
    Van Duijn, C.M., Maturitas, 1999, vol. 15, pp. 201–205.CrossRefGoogle Scholar
  9. 9.
    Inestrosa, N.C., Marzolo, M.P., and Bonnetont, A.B., Mol. Neurobiol, 1998, vol. 17, pp. 73–86.CrossRefPubMedGoogle Scholar
  10. 10.
    Waring, S.C., Rocca, W.A., Petersen, R.C., et al., Neurology, 1999, vol. 52, pp. 965–970.PubMedGoogle Scholar
  11. 11.
    Yaffe, K., Lui, L-Y., Grady, D., et al., Lancet, 2000, vol. 356, pp. 708–712.CrossRefPubMedGoogle Scholar
  12. 12.
    Ween, A.E.A.M., Uitterlinden, A.G., Westendorp, I.C.D., et al., J. Clin. Endocrinol. Metab., 1999, vol. 84, pp. 3146–3150.CrossRefGoogle Scholar
  13. 13.
    Yaffe, K., Haan, M., Byers, A., et al., Neurology, 2000, vol. 54, pp. 1949–1953.PubMedGoogle Scholar
  14. 14.
    Henderson, V.W., Paganini-Hill, A., Miller, et al., Neurology, 2000, vol. 54, pp. 295–301.PubMedGoogle Scholar
  15. 15.
    Wang, P.N., Liao, S.Q., Liu, R.S., et al., Neurology, 2000, vol. 54, pp. 2061–2066.PubMedGoogle Scholar
  16. 16.
    Solerte, S.B., Fioravanti, M., Racchi, M., et al., Maturitas, 1999, vol. 31, pp. 95–101.CrossRefPubMedGoogle Scholar
  17. 17.
    Schneider, L.S., Farlow, M.R., Henderson, V.W., and Pogoda, J., Neurology, 1996, vol. 46, pp. 1580–1584.PubMedGoogle Scholar
  18. 18.
    Gibbs, R.B. and Aggarwal, P., Horm. Behav., 1998, vol. 34, pp. 98–111.CrossRefPubMedGoogle Scholar
  19. 19.
    Gibbs, R.B., Brain Res., 1996, vol. 720, pp. 61–68.CrossRefPubMedGoogle Scholar
  20. 20.
    McMilan, P.J., Singer, C.A., and Dorsa, D.M., J. Neurosci., 1996, vol. 16, pp. 1860–1865.Google Scholar
  21. 21.
    Mufson, E.J., Cai, W.J., Jaffer, S., et al., Brain Res., 1999, vol. 849, pp. 253–274.CrossRefPubMedGoogle Scholar
  22. 22.
    Singer, C.A., McMilan, P.J., Dobie, D.J., and Dorsa, D.M., Brain Res., 1998, vol. 789, pp. 343–346.CrossRefPubMedGoogle Scholar
  23. 23.
    Hirata, S., Shoda, T., Kato, J., and Hoshi, K., Trends Endocrinol. Metab., 2003, vol. 14, pp. 124–129.CrossRefPubMedGoogle Scholar
  24. 24.
    Greene, G.L., Gilna, P., Waterfield, M., et al., Science, 1986, vol. 231, pp. 1150–1154.CrossRefPubMedGoogle Scholar
  25. 25.
    Ponglikitmongkol, M., Green, S., and Chambon, P., EMBO J., 1988, vol. 7, pp. 3385–3388.PubMedGoogle Scholar
  26. 26.
    Metzger, D., Ali, S., Bornert, J-M., and Chambon, P., J Biol Chem, 1995, vol. 270, pp. 9535–9542.CrossRefPubMedGoogle Scholar
  27. 27.
    Kumar, V., Green, S., Stack, et al., Cell, 1987, vol. 51, pp. 941–951.CrossRefPubMedGoogle Scholar
  28. 28.
    Garcia Pedrero, J.M., Zuazua, P., Martinez-Campa, C., et al., Endocrinology, 2003, vol. 144, pp. 2967–2976.CrossRefPubMedGoogle Scholar
  29. 29.
    Ogawa, S., Inoue, S., Watanabe, T., et al., Biochem. Biophys. Res. Commun., 1998, vol. 243, pp. 122–126.CrossRefPubMedGoogle Scholar
  30. 30.
    Picard, D., Kumar, V., Chambon, P., and Yamamoto, K.R., Cell Regul., 1990, vol. 1, pp. 291–299.PubMedGoogle Scholar
  31. 31.
    Paech, K., Webb, P., Kuiper, G.G.J.M., et al., Science, 1997, vol. 277, pp. 1508–1510.CrossRefPubMedGoogle Scholar
  32. 32.
    Mesulam, M-M., Mufson, E.J., Levey, A.I., and Wainer, B.H., J. Comp. Neurol., 1983, vol. 214, pp. 170–197.CrossRefPubMedGoogle Scholar
  33. 33.
    Price, D.L., Cork, L.C., Whitehouse, P.J., et al., Ann. N.Y. Acad. Sci., 1985, vol. 444, pp. 287–295.CrossRefPubMedGoogle Scholar
  34. 34.
    Salehi, A., Gonzalez Martinez V., Swaab D.F, Neurobiol. Aging, 1998, vol. 19, pp. 505–510.CrossRefPubMedGoogle Scholar
  35. 35.
    Barnes, L.L., Wilson, R.S., Bienias, J.L., et al., Arch. Gen. Psychiatry, 2005, vol. 62, pp. 685–691.CrossRefPubMedGoogle Scholar
  36. 36.
    Ishunina, T.A. and Swaab, D.F., Neurobiol. Aging, 2001, vol. 22, pp. 417–426.CrossRefPubMedGoogle Scholar
  37. 37.
    Ishunina, T.A. and Swaab, D.F., Exp. Neurol., 2003, vol. 183, pp. 159–172.CrossRefPubMedGoogle Scholar
  38. 38.
    Bogolepova, I.N., Stroenie i razvitie gipotalamusa cheloveka (Structure and Development of Human Hypothalamus), Leningrad: “Meditsina”, Leningradskoe otdelenie, 1968, 176 p.Google Scholar
  39. 39.
    Nakamura, S., Takemura, M., Ohnishi, K., et al., Neurosci. Let., 1993, vol. 151, pp. 196–199.CrossRefGoogle Scholar
  40. 40.
    Airaksinen, M.S., Paetau, A., Paljarvi, L., et al., Neuroscience, 1991, vol. 44, pp. 465–481.CrossRefPubMedGoogle Scholar
  41. 41.
    Braak, H. and Braak, E., Acta Neuropathol., 1991, vol. 82, pp. 239–259.CrossRefPubMedGoogle Scholar
  42. 42.
    Simpson, J., Yates, C.M., Watts, A.G., and Fink, G., Neuropathol. Appl. Neurobiol, 1998, vol. 14, pp. 381–393.CrossRefGoogle Scholar
  43. 43.
    Swaab, D.F., Lucassen, P.J., Salehi, A., et al., Prog. Brain Res., 1998, vol. 117, pp. 343–377.CrossRefPubMedGoogle Scholar
  44. 44.
    Salehi, A., Heyn, S., Gonatas, N.K., and Swaab, D.F., Neurosci. Let., 1995, vol. 193, pp. 29–32.CrossRefGoogle Scholar
  45. 45.
    Ishunina, T.A., van Heerikhuize, J.J., Ravid, R., and Swaab, D.F., Brain Res., 2003, vol. 988, pp. 84–96.CrossRefPubMedGoogle Scholar
  46. 46.
    Swaab, D.F., Handbook of Clinical Neurology, Aminoff, M.J., Boller, F., and Swaab, D.F., Eds., Elsevier, 2003, vol. 79, 3rd series, p. 502.Google Scholar
  47. 47.
    Wilkinson, A. and Davies, I., Age Ageing, 1978, vol. 7, pp. 151–160.CrossRefPubMedGoogle Scholar
  48. 48.
    Grossi, D., Lopez, O.L., and Martinez, A.J., Acta Neurol. Scand., 1989, vol. 80, pp. 41–45.CrossRefPubMedGoogle Scholar
  49. 49.
    Nakabayashi, J., Yoshimura, M., MorishimaKawashima, M., et al., J. Neuropathol. Exp. Neurol., 1998, vol. 57, pp. 343–352.CrossRefPubMedGoogle Scholar
  50. 50.
    Ishunina, T.A., Kamphorst, W., and Swaab, D.F., Neurobiol. Aging, 2003, vol. 24, pp. 817–828.CrossRefPubMedGoogle Scholar
  51. 51.
    Ishunina, T.A., Swaab, D.F., and Fischer, D.F., J. Clin. Endocrinol. Metab., 2005, vol. 90, no. 6, pp. 37573765.CrossRefGoogle Scholar
  52. 52.
    Sharp, P.A. and Burge, C.B., Cell, 1997, vol. 91, pp. 875–879.CrossRefPubMedGoogle Scholar
  53. 53.
    Ishunina, T.A. and Swaab, D.F., Neurobiol. Aging, 2008, vol. 29, pp. 1177–1189.CrossRefPubMedGoogle Scholar
  54. 54.
    Ishunina, T.A., Svaab, D.F., and Bogolepova, I.N., Morfologicheskie Vedomosti, 2007, nos. 1–2, pp. 62–65.Google Scholar
  55. 55.
    Manly, J.J., Merchant, C.A., Jacobs, D.M., et al., Neurology, 2000, vol. 54, pp. 833–837.PubMedGoogle Scholar
  56. 56.
    Hogervorst, E. and Smith, A.D., Neuroendocrinol. Lett, 2002, vol. 23, pp. 155–160.PubMedGoogle Scholar
  57. 57.
    Cunningham, C.J., Sinnott, M., Denihan, A., et al., J. Clin. Endocrinol. Metab., 2001, vol. 86, pp. 1099–1103.CrossRefPubMedGoogle Scholar
  58. 58.
    Ishunina, T.A., Fischer, D.F., and Swaab, D.F., Neurobiol. Aging, 2007, vol. 28, pp. 1670–1681.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Department of Histology, Embryology, and CytologyKursk State Medical UniversityKurskRussia
  2. 2.KurskRussia

Personalised recommendations