Skip to main content
Log in

Studies of the pathogenesis of slow neuroinfections using proteomic techniques

  • Clinical Neurochemistry
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

The etiology and pathogenesis of amyotrophic lateral sclerosis (ALS) are still unknown. Autoimmune mechanisms are considering to be possible causes of ALS, among several other possible mechanisms. In this paper, we describe the determination of autoantibodies against proteins of the brain motor zone and skeletal muscular system in the sera of patients suffering from ALS. Autoantibodies against carbonyl reductase 1, α-enolase, 2′,3′-phosphodiesterase of cyclic nucleotides, and pyruvate kinase 3 (isoform 2) were primarily found in the motor zone, whereas those against muscular creatine phosphokinase, myoglobine, carboanhydrase III, and troponin 1 of the fast type were identified in the skeletal muscle in the majority of patients with ALS. In addition, dynamic changes in the structure of the troponin complex were demonstrated in the tissue of skeletal muscle. The significance of the presence of autoantibodies against proteins of the brain motor zone in the sera of ALS patients is unknown. These autoantibodies most likely appeared as a secondary immunological effect of neuron damage. We can also conjecture that they accelerate the affection of muscle tissue and motoneurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALS:

amyotrophic lateral sclerosis

MALDI-TOF:

matrix-assisted laser desorption ionization time-of-flight

SODI:

superoxidedismutase I

References

  1. Khondakarian, O.A., Bunina, T.L., and Zavalishin, I.A., Bokovoi amiotroficheskii skleroz (Amyotrophic lateral sclerosis), Moscow: Meditsina, 1978.

    Google Scholar 

  2. de Belleroche, J., Orrell, R., and King, A., J. Med. Genet., 1995, vol. 32, pp. 841–847.

    PubMed  Google Scholar 

  3. Kawamata, J., Shimohama, S., Takano, S., et al. Hum. Mut., 1997, vol. 9, no. 4, pp. 356–358.

    Article  PubMed  CAS  Google Scholar 

  4. Kostrzewa, M., Damian, M.S., and Muller, U., Hum. Genet., 1996, vol. 98, no. 1, pp. 48–50.

    Article  PubMed  CAS  Google Scholar 

  5. Shaw, C.E., Enayat, Z.E., Powell, J.F., et al., Neurology, 1997, vol. 49, no. 6, pp. 1612–1616.

    PubMed  CAS  Google Scholar 

  6. Skvortsova, V.I., Limborskaya, S.A., Slominsky, P.A., et al., Zh. Nevrol. and Psikhiat. 2000, no. 1, pp. 44–47.

  7. Tomkins, J., Usher, P., Slade, J.Y., et al., Neuroreport., 1998, vol. 1, no. 9, pp. 3967–3970.

    Article  Google Scholar 

  8. Skvortsova, V., Shadrina, M., Slominsky, P., et al., Eur. J. Hum. Genet., 2004, vol. 12, no. 3, pp. 241–244.

    Article  PubMed  CAS  Google Scholar 

  9. Hand, C.K., Devon, R.S., Gros-Louis, F., et al., Arch. Neurol., 2003, vol. 60, pp. 1768–1771.

    Article  PubMed  Google Scholar 

  10. Kawahara, Y., Ito, K., Sun, H., et al., Nature (London), 2004, vol. 427, p. 801.

    Article  CAS  Google Scholar 

  11. Allen, S., Heath, P.R., Kirby, J., et al., J. Biol. Chem., 2003, vol. 278, pp. 6371–6383.

    Article  PubMed  CAS  Google Scholar 

  12. Ilzecka, J. and Stelmasiak, Z., J. Neurol. Sci., 2003, vol. 24, no. 4, pp. 286, 287.

    Article  CAS  Google Scholar 

  13. Couratier, P., Yi, F.H., Preud’homme, J.L., et al., J. Neurol. Sci., 1998, vol. 5, no. 154, pp. 137–145.

    Article  Google Scholar 

  14. Smith, R.G., Alexianu, M.E., Crawford, G., et al., Proc. Natl. Acad. Sci., U. S. A., 1994, vol. 12, no. 91, pp. 3393–3397.

    Article  Google Scholar 

  15. Ge, Y., Molloy, M.P., Chamberlain, J.S., et al., Proteomics, 2003, vol. 3, no. 10, pp. 1895–1903.

    Article  PubMed  CAS  Google Scholar 

  16. Klose, J., Nock, C., Herrmann, M., et al., Ann. Clin. Biochem., 2003, vol. 40, pp. 9–15.

    Article  Google Scholar 

  17. Kovalyov, L.I., Khudaidatov, A.I., Galyuk, M.A., et al., Vopr. Med. Khim., 1994, vol. 5, pp. 42–45.

    Google Scholar 

  18. Brooks, B.R., J. Neurol. Sci., 1994, vol. 124, pp. 96–107.

    Article  PubMed  Google Scholar 

  19. Pulyaeva, E.V., Kovalyov, L.I., Tsvetkova, M.N., et al., Biokhimiya, 1990, vol. 55, pp. 489–498.

    CAS  Google Scholar 

  20. Kovalyov, L.I., Shishkin, S.S., Efimochkin, A.S., et al., Electrophoresis, 1995, no. 16, pp. 1160–1169.

  21. Fairbanks, G., Steck, T.L., and Wallach, D.F.H., Biochemistry, 1991, vol. 10, pp. 2607–2617.

    Google Scholar 

  22. Blum, H., Beir, H., and Gross, H.G., Electrophoresis, 1987, vol. 8, pp. 126–129.

    Article  Google Scholar 

  23. Shevchenko, A., Wilm, M., Vorm, O., et al., Anal. Chem., 1996, vol. 68, pp. 850–858.

    Article  PubMed  CAS  Google Scholar 

  24. Govorun, V.M., Moshkovskii, S.A., Tikhonova, O.V., et al., Biokhimiya, 2003, no. 68, pp. 52–60.

  25. Kovalyova, M.A., Kovalyov, L.I., Khudaidatov, A.I., et al., Biokhimiya, 1994, vol. 59, no. 5, pp. 675–681.

    Google Scholar 

  26. Samson, F., Mesnard, L., Mihovilovic, M., et al., Biochem. Biophys. Res. Commun., 1994, vol. 199, pp. 841–847.

    Article  PubMed  CAS  Google Scholar 

  27. Bruijn, L.I., Miller, T.M., and Cleveland, D.W., Annu. Rev. Neurosci., 2004, vol. 27, pp. 723–749.

    Article  PubMed  CAS  Google Scholar 

  28. Borchelt, D.R., Lee, M.K., Slunt, H.S., et al., Proc. Natl. Acad. Sci. U. S. A., 1994, vol. 91, pp. 8292–8296.

    Article  PubMed  CAS  Google Scholar 

  29. Pardo, C.A., Xu, Z., Borchelt, D.R., et al., Proc. Natl. Acad. Sci. U. S. A., 1995, vol. 92, pp. 954–958.

    Article  PubMed  CAS  Google Scholar 

  30. Reaume, A.G., Elliott, J.L., Hoffman, E.K., et al., Nat. Genet., 1996, vol. 13, pp. 43–47.

    Article  PubMed  CAS  Google Scholar 

  31. Gorbunova, V.H., Savel’eva-Vasil’eva, E.A., and Krasil’nikov, V.V., Molekulyarnaya Nevrologiya (Molecular Neurology), St. Petersburg: Intermedika, 2000.

    Google Scholar 

  32. Shubnikova, E.A., Yurina, N.A., Gusev, N.B., et al., Myshechnye tkani (Muscle Tissues), Moscow: Meditsyna, 2001.

    Google Scholar 

  33. Ochi, H., Horiuchi, I., Araki, N., et al., FEBS Lett., 2002, vol. 528, pp. 197–202.

    Article  PubMed  CAS  Google Scholar 

  34. Walsh, M.J. and Murray, J.M., J. Clin. Invest., 1998, vol. 101, pp. 1923–1931.

    Article  PubMed  CAS  Google Scholar 

  35. Sanders, V.J., Waddell, S.L., Felisan, X., et al., Arch. Neurol., 1996, vol. 53, pp. 125–133.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Kovalyov.

Additional information

Original Russian Text © L.I. Kovalyov, M.A. Kovalyova, M.V. Burakova, L.S. Eremina, S.S. Shishkin, S.V. Shigeev, M.V. Serebryakova, M.N. Zakharova, I.A. Zavalishin, 2007, published in Neirokhimiya, 2007, Vol. 24, No. 3, pp. 243–250.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovalyov, L.I., Kovalyova, M.A., Burakova, M.V. et al. Studies of the pathogenesis of slow neuroinfections using proteomic techniques. Neurochem. J. 1, 318–325 (2007). https://doi.org/10.1134/S1819712407040095

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712407040095

Key words

Navigation