Skip to main content
Log in

Diblock Copolymer Melt in an Electric Field: Stability of the Homogeneous State in the Random Phase Approximation

  • Published:
Polymer Science, Series C Aims and scope Submit manuscript

Abstract

The contribution of I.Ya. Erukhimovich (1947–2022) to the creation of the theory of microphase separation in di- and triblock copolymers has been briefly analyzed. His matrix method of calculating correlation functions for multicomponent polymer systems has been applied to find the spinodal of a diblock copolymer melt in a static electric field. It has been strictly shown that for a linear dependence of local dielectric constant of the copolymer on the order parameter the spinodal condition remains the same as in the absence of the electric field. The correction to the critical value of the Flory‒Huggins parameter has been calculated for more general case of the quadratic dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. Abetz and P. F. W. Simon, in Advances in Polymer Science, Ed. by V. Abetz (Springer, Heidelberg; Berlin, 2005), Vol. 189.

    Google Scholar 

  2. C. M. Bates and F. S. Bates, Macromolecules 50 (1), 3 (2017).

    Article  CAS  Google Scholar 

  3. M. Lazzari and M. Torneiro, Polymers 12 (4), 869 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. C. Cummins, R. Lundy, J. J. Walsh, V. Ponsinet, G. Fleury, and M. A. Morris, Nano Today 35, 100936 (2020).

  5. Y. Chen and S. S. Xiong, Int. J. Extreme Manuf. 2 (3), 032006 (2020).

  6. K.-C. Yang, P. Puneet, P.-T. Chiu, and R.-M. Ho, Acc. Chem. Res. 55 (15), 2033 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Y. D. Zou, X. R. Zhou, J. H. Ma, X. Y. Yang, and Y. H. Deng, Chem. Soc. Rev 49 (4), 1173 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. C. Li, Q. Li, Y. V. Kaneti, D. Hou, Y. Yamauchi, and Y. Y. Mai, Chem. Soc. Rev. 49 (14), 4681 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. J. Min, D. Barpuzary, H. Ham, G.-C. Kang, and M. J. Park, Acc. Chem. Res. 54 (21), 4024 (2022).

    Article  Google Scholar 

  10. S. Kang, G.-H. Kim, and S.-J. Park, Acc. Chem. Res. 55 (16), 2224 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. S. H. Ma, Y. S. Hou, J. L. Hao, C. C. Lin, J. W. Zhao, and X. Sui, Polymers 14 (21), 4568 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S. M. Liu, Y. Yang, L. B. Zhang, J. P. Xu, and J. T. Zhu, J. Mater. Chem. C 8 (47), 16633 (2020).

    Article  CAS  Google Scholar 

  13. M. Radjabian and V. Abetz, Prog. Polym. Sci. 102, 101219 (2020).

  14. Theory and Simulation, Polym. Sci., Ser. A. 50 (1), 49 (2009).

    Google Scholar 

  15. I. Ya. Yerukhimovich, Polym. Sci. U.S.S.R 21 (2), 470 (1979).

    Article  Google Scholar 

  16. I. M. Lifshitz, Zh. Eksp. Teor. Fiz. 28 (6), 2408 (1969).

    Google Scholar 

  17. I. Ya. Yerukhimovich, Polym. Sci. U.S.S.R 24 (9), 2223, 2232 (1982).

  18. A. V. Dobrynin and I. Ya. Yerukhimovich, Vysokomol. Soed. B 32 (9), 663 (1991); 32 (10), 743 (1991); 32 (11), 852 (1991).

  19. A. V. Dobrynin and I. Ya. Yerukhimovich, Polym. Sci. U.S.S.R 33 (5), 1012 (1991).

    Article  Google Scholar 

  20. A. V. Dobrynin and I. Ya. Erukhimovich, Macromolecules 26 (2), 276 (1993).

    Article  CAS  Google Scholar 

  21. I. Ya. Erukhimovich, Yu. G. Smirnova, and V. Abetz, Polym. Sci., Ser. A 45 (11), 1093 (2003).

    Google Scholar 

  22. S. A. Tarasenko and I. Ya. Erukhimovich, Polym. Sci., Ser. A 47 (3), 299 (2005).

    Google Scholar 

  23. I. Ya. Erukhimovich, Eur. Phys. J. E 18 (4), 383 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. I. Ya. Erukhimovich and A. N. Semenov, Zh. Eksp. Teor. Fiz. 63 (1), 149 (1986).

    Google Scholar 

  25. I. Ya. Erukhimovich and Y. V. Kudryavtsev, Eur. Phys. J. E 11 (4), 349 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. J. Qin, F. S. Bates, and D. C. Morse, Macromolecules 43, 5128 (2010).

    Article  CAS  Google Scholar 

  27. I. Erukhimovich, Y. A. Kriksin, and G. Brinke, Macromolecules 48 (21), 7909 (2015).

    Article  CAS  Google Scholar 

  28. I. Erukhimovich, Y. A. Kriksin, and G. Brinke, Macromolecules 50, 3922 (2017).

    Article  CAS  Google Scholar 

  29. L. Leibler, Macromolecules 13 (6), 1602 (1980).

    Article  CAS  Google Scholar 

  30. P.-G. de Gennes, J. Phys. (Paris) 31, 235 (1970).

    Article  CAS  Google Scholar 

  31. P. Flory, Principles of Polymer Chemistry (Cornell Univ. Press, Ithaca; New York, 1953).

    Google Scholar 

  32. T. P. Lodge, Macromolecules 53 (1), 2 (2020).

    Article  CAS  Google Scholar 

  33. G. H. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers (Oxford Univ. Press, New York, 2006).

    Google Scholar 

  34. Y. A. Kriksin, I. Ya. Erukhimovich, P. G. Khalatur, Y. G. Smirnova, and G. Brinke, J. Chem. Phys. 128, 244903 (2008).

  35. M. W. Matsen and M. Schick, Phys. Rev. Lett. 72 (16), 2660 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. I. Ya. Erukhimovich, Yu. A. Kriksin, and Y. V. Kudryavtsev, Polym. Sci., Ser. A 64 (2), 121 (2022).

    Article  CAS  Google Scholar 

  37. A. S. Merekalov, Y. I. Derikov, A. A. Ezhov, Yu. A. Kriksin, I. Ya. Erukhimovich, and Y. V. Kudryavtsev, Polymer 264, 125544 (2023).

  38. K. Amundson, E. Helfand, S. S. Patel, X. Quan, and S. D. Smith, Macromolecules 25 (7), 1935 (1992).

    Article  CAS  Google Scholar 

  39. K. Amundson, E. Helfand, X. Quan, and S. D. Smith, Macromolecules 26 (11), 2698 (1993).

    Article  CAS  Google Scholar 

  40. E. Gurovich, Macromolecules 27 (25), 7339 (1994).

    Article  CAS  Google Scholar 

  41. A. L. Kolesnikov, Yu. A. Budkov, E. A. Basharova, and M. G. Kiselev, Soft Matter 13 (24), 4363 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. J. Wu, X. Wang, Y. Ji, L. Hea, and S. Li, Phys. Chem. Chem. Phys. 18 (15), 10309 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. I. Gunkel, S. Stepanow, T. Thurn-Albrecht, and S. Trimper, Macromolecules 40 (6), 2186 (2007).

    Article  CAS  Google Scholar 

  44. H. G. Schoberth, C. W. Pester, M. Ruppel, V. S. Urban, and A. Böker, ACS Macro Lett. 2 (6), 469 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. K. Orzechowski, M. Adamczyk, A. Wolny, and Y. Tsori, J. Phys. Chem. B 118 (25), 7187 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. C. C. Kathrein, W. K. Kipnusu, F. Kremer, and A. Böker, Macromolecules 48 (10), 3354 (2015).

    Article  CAS  Google Scholar 

  47. Y. Tsori, Rev. Mod. Phys. 81 (4), 1471 (2009).

    Article  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Science Foundation (project 21-13-00411).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Kriksin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Karpushkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kriksin, Y.A., Kudryavtsev, Y.V. Diblock Copolymer Melt in an Electric Field: Stability of the Homogeneous State in the Random Phase Approximation. Polym. Sci. Ser. C 65, 53–59 (2023). https://doi.org/10.1134/S1811238223700212

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238223700212

Navigation