Skip to main content
Log in

Amphiphilic Copolymers of Different Structure Based on Poly(ethylene glycol): Synthesis, Physico-Chemical Properties, and Cytotoxicity

  • REVIEWS
  • Published:
Polymer Science, Series C Aims and scope Submit manuscript

Abstract

New procedures for the preparation of grafted and branched amphiphilic copolymers based on poly(ethylene glycol) have been suggested. Radical polymerization with TEMPO and sulfuric acid has afforded controlled synthesis of grafted copolymers of methyl methacrylate with poly(ethylene glycol) methacrylate. Radical copolymerization of allyl acetate with poly(ethylene glycol) acrylate in the presence of divinylbenzene has given branched copolymers. It has been shown that these copolymers can form micelles in aqueous medium; cytotoxicity of the copolymers and the ability to suppress the resistance of human cancer cells NCI/ADR-RES have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. H. Park, M. Ye, and K. Park, Molecules 10, 146 (2005).

    Article  CAS  Google Scholar 

  2. I. R. Schmolka, J. Am. Oil Soc. 54 (3), 110 (1977).

    Article  CAS  Google Scholar 

  3. X. Liu, H. Xiong, C. Xu, J. Yao, X. Zhu, J. Zhou, and J. Yao, Polym. Chem. 9, 1827 (2018).

    Article  CAS  Google Scholar 

  4. D. N. Pavlov, T. Y. Dorodnykh, O. V. Zaborova, and N. S. Melik-Nubarov, Polym. Sci., Ser. A 51 (3), 295 (2009).

    Article  Google Scholar 

  5. P. Elamanchili, C. McEachern, and H. Burt, J. Pharm. Sci. 98 (3), 945 (2009).

    Article  CAS  Google Scholar 

  6. T. V. Demina, O. A. Budkina, G. A. Badun, N. S. Melik-Nubarov, H. Frey, S. S. Müller, J. Nieberle, and I. D. Grozdova, Biomacromolecules 15, 2672 (2014).

    Article  CAS  Google Scholar 

  7. C. Zalipsky, A. Gilon, and A. Zilkha, J. Macromol. Sci., Part A 21, 839 (1984).

    Google Scholar 

  8. D. A. Shipp, J.-L. Wang, and K. Matyjaszewski, Macromolecules 31, 8005 (1998).

    Article  CAS  Google Scholar 

  9. K. Jankova, X. Chen, J. Kops, and W. Batsberg, Macromolecules 31, 538 (1998).

    Article  CAS  Google Scholar 

  10. A. Zhirnov, E. Nam, G. Badun, A. Ezhov, N. Melik-Nubarov, and I. Grozdova, Pharm. Res. 35, 205 (2018).

    Article  CAS  Google Scholar 

  11. T. V. Demina, O. A. Budkina, G. A. Badun, N. S. Melik-Nubarov, I. D. Grozdova, H. Frey, S. S. Müller, and J. Nieberle, Biomacromolecules 15, 2672 (2014).

    Article  CAS  Google Scholar 

  12. B. Lessard and M. Maric, Macromolecules 41 (21), 7870 (2008).

    Article  CAS  Google Scholar 

  13. J. Nicolas, P. Couvreur, and B. Charleux, Macromolecules 41 (11), 3758 (2008).

    Article  CAS  Google Scholar 

  14. M. Yu. Zaremski and N. S. Melik-Nubarov, Polym. Sci., Ser. C 63 (2), 126 (2021).

    Article  CAS  Google Scholar 

  15. M. Yu. Zaremski and V. V. Odintsova, Polym. Sci., Ser. C 63 (1), 11 (2021).

    Article  CAS  Google Scholar 

  16. M. Yu. Zaremski, E. E. Aliev, E. S. Garina, and N. S. Melik-Nubarov, Mendeleev Commun. 30, 627 (2020).

    Article  CAS  Google Scholar 

  17. M. M. Ali and H. D. H. Stöver, Macromolecules 37, 5219 (2004).

    Article  CAS  Google Scholar 

  18. A. J. D. Magenau, Y. Kwak, K. Schröder, and K. Matyjaszewski, ACS Macro Lett. 1 (4), 508 (2012).

    Article  CAS  Google Scholar 

  19. N. O’Brien, A. McKee, D. C. Sherrington, A. T. Slark, and A. Titterton, Polymer 41, 6027 (2000).

    Article  Google Scholar 

  20. S. V. Kurmaz, M. L. Bubnova, E. O. Perepelitsina, and G. A. Estrina, Polym. Sci., Ser. A 48, 696 (2006).

    Article  Google Scholar 

  21. N. V. Fadeeva, S. V. Korma, E. I. Knerel’man, G. I. Davydova, V. I. Torbov, and N. N. Dremova, Izv. RAN., Ser. Khim., No. 8, 2089 (2016).

  22. N. M. Smeets, Eur. Polym. J. 49, 2528 (2013).

    Article  CAS  Google Scholar 

  23. I. M. Le-Deygen, O. E. Musatova, V. N. Orlov, N. S. Melik-Nubarov, and I. D. Grozdova, Biomacromolecules 22 (2), 681 (2021).

    Article  CAS  Google Scholar 

  24. M. V. Kitaeva, N. S. Melik-Nubarov, F. M. Menger, and A. A. Yaroslavov, Langmuir 20 (16), 6575 (2004).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors are grateful to M.V. Bermeshev and E.V. Chernikova for the assistance in GPS analysis of the polymers and to E.M. Budynina for NMR studies of the polymers.

Funding

This study was performed in the scope of the State Task “Modern Problems of Chemistry and Physico-Chemistry of High-Molecular Compounds” (State Budget, no. AAAA-A16-116031050014-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Zaremski.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Karpushkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaremski, M.Y., Melik-Nubarov, N.S., Grozdova, I.D. et al. Amphiphilic Copolymers of Different Structure Based on Poly(ethylene glycol): Synthesis, Physico-Chemical Properties, and Cytotoxicity. Polym. Sci. Ser. C 64, 135–143 (2022). https://doi.org/10.1134/S1811238222700126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238222700126

Navigation