Skip to main content
Log in

Effect of the Structure of Arms and Way of Their Attachment to Calix[4]arene on Self-Assembly Processes in Aqueous Solutions of Thermoresponsive Star-Shaped Poly(2-alkyl-2-oxazolines) and Poly(2-alkyl-2-oxazines)

  • REVIEWS
  • Published:
Polymer Science, Series C Aims and scope Submit manuscript

Abstract

The aqueous solutions of star-shaped four-arm poly(2-alkyl-2-oxazolines) and poly(2-alkyl-2-oxazines), in which the upper rim-functionalized calix[4]arene acts as a branching center, are studied by static and dynamic light scattering and turbidimetry. It is shown that at low temperatures in aqueous solutions of these polymer stars aggregates are formed as a result of interaction of hydrophobic calix[4]arene cores and formation of hydrogen bonds between dehydrated monomer units of arms. The process of aggregation dominates upon heating of the solutions. Varying the mode of arm attachment to a core causes a change in its configuration. The values of the phase transition temperature decrease when comparing polymers with the lower rim-functionalized core with polymers in which arms are attached to the upper rim of calix[4]arene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. V. R. de la Rosa, J. Mater. Sci. Mater. Med. 25, 1211 (2014).

    Article  CAS  Google Scholar 

  2. E. Rossegger, V. Schenk, and F. Wiesbrock, Polymers 5, 956 (2013).

    Article  Google Scholar 

  3. R. Hoogenboom and H. Schlaad, Polym. Chem. 8, 24 (2017).

    Article  CAS  Google Scholar 

  4. A. Zahoranová and R. Luxenhofer, Adv. Healthcare Mater. (2021).

  5. S. Kobayashi, T. Igarashi, Y. Moriuchi, and T. Saegusa, Macromolecules 19, 535 (1986).

    Article  CAS  Google Scholar 

  6. K. Kempe, Macromol. Chem. Phys. 218 (11), 1700021 (2012).

  7. C. Weber, M. Wagner, D. Baykal, S. Hoeppener, R. M. Paulus, G. Festag, E. Altuntas, F. H. Schacher, and U. S. Schubert, Macromolecules 46 (13), 5107 (2013).

    Article  CAS  Google Scholar 

  8. A. Dworak, B. Trzebicka, A. Kowalczuk, C. Tsvetanov, and S. Rangelov, Polymery 59 (1), 88 (2014).

    Article  CAS  Google Scholar 

  9. M. M. Lübtow, L. Hahn, M. S. Haider, and R. Luxenhofer, J. Am. Chem. Soc. 139 (32), 10980 (2017).

    Article  Google Scholar 

  10. N. Oleszko-Torbus, W. Waiach, A. Utrata-Wesoiek, and A. Dworak, Macromolecules 50 (19), 7636 (2017).

    Article  CAS  Google Scholar 

  11. B. Verbraeken, B. D. Monnery, K. Lava, and R. Hoogenboom, Eur. Polym. J. 88, 451 (2017).

    Article  CAS  Google Scholar 

  12. O. Sedlacek and R. Hoogenboom, Adv. Ther. 3 (1), 1900168 (2019).

  13. G. Morgese, B. Verbraeken, S. N. Ramakrishna, Y. Gombert, E. Cavalli, J.-G. Rosenboom, M. Zenobi-Wong, N. D. Spencer, R. Hoogenboom, and E. M. Benetti, Angew. Chem. 130 (1), 11841 (2018).

    Article  Google Scholar 

  14. N. Oleszko-Torbus, Polym. Rev. 61 (2021) (in press).

  15. S. Kobayashi, T. Igarashi, Y. Moriuchi, and T. Saegusa, Macromolecules 19, 535 (1986).

    Article  CAS  Google Scholar 

  16. H. M. L. Lambermont-Thijs, M. W. M. Fijten, A. J. T. van der Linden, B. M. van Lankvelt, M. M. Bloksma, U. S. Schubert, and R. Hoogenboom, Macromolecules 44, 4320 (2011).

    Article  CAS  Google Scholar 

  17. A. J. Levy and M. H. Litt, J. Polym. Sci., Polym. Lett. Ed. 5, 881 (1967).

    Article  CAS  Google Scholar 

  18. M. S. Haider, M. M. Lübtow, S. Endres, S. Forster, V. J. Flegler, B. Bottcher, V. Aseyev, A.-C. Pöppler, and R. Luxenhofer, ACS Appl. Mater. Interfaces 12 (22), 24531 (2020).

    Article  CAS  Google Scholar 

  19. H. Schlaad, C. Diehl, A. Gress, M. Meyer, A. L. Demirel, Y. Nur, and A. Bertin, Macromol. Rapid Commun. 31 (6), 511 (2010).

    Article  CAS  Google Scholar 

  20. D. Roy, W. L. A. Brooks, and B. S. Sumerlin, Chem. Soc. Rev. 42, 7214 (2013).

    Article  CAS  Google Scholar 

  21. K. P. Luef, C. Petit, B. Ottersbock, G. Oreski, F. Ehrenfeld, B. Grassl, S. Reynaud, and F. Wiesbrock, Eur. Polym. J. 88, 701 (2017).

    Article  CAS  Google Scholar 

  22. T. R. Dargaville, R. Forster, B. L. Farrugia, K. Kempe, L. Voorhaar, U. S. Schubert, and R. Hoogenboom, Macromol. Rapid. Commun. 33 (19), 1695 (2012).

    Article  CAS  Google Scholar 

  23. A. Kowalczuk, J. Kronek, K. Bosowska, B. Trzebicka, and A. Dworak, Polym. Int. 60, 1001 (2011).

    Article  CAS  Google Scholar 

  24. A. V. Ten’kovtsev, A. E. Trofimov, and L. I. Shcherbinskaya, Polym. Sci., Ser. B 54, 142 (2012).

    Article  Google Scholar 

  25. A. Amirova, S. Rodchenko, Z. Makhmudova, G. Cherkaev, S. Milenin, E. Tatarinova, M. Kurlykin, A. Tenkovtsev, and A. Fillippov, Macromol. Chem. Phys. 218 (4), 1600387 (2017).

  26. T. Yu. Kirila, M. P. Kurlykin, A. V. Tenkovtsev, and A. P. Filippov, Polym. Sci., Ser. A 59 (6), 826 (2017).

    Article  CAS  Google Scholar 

  27. T. Kirila, A. Smirnova, V. Aseyev, A. Tenkovtsev, H. Tenhu, and A. Filippov, Polymers 13 (9), 1429 (2021).

    Article  CAS  Google Scholar 

  28. T. Kirila, A. Smirnova, A. Razina, A. Tenkovtsev, and A. Filippov, Polymers 13 (7), 1152 (2021).

    Article  CAS  Google Scholar 

  29. A. Smirnova, T. Kirila, A. Blokhin, N. Kozina, M. Kurlykin, A. Tenkovtsev, and A. Filippov, Eur. Polym. J. 156, 110637 (2021).

  30. A. Amirova, S. Rodchenko, S. Milenin, E. Tatarinova, M. Kurlykin, A. Tenkovtsev, and A. Filippov, J. Polym. Res. 24 (8), 124 (2017).

    Article  Google Scholar 

  31. S. Shinkai, T. Arimura, K. Araki, H. Kawabata, H. Satoh, T. Tsubaki, O. Manabe, and J. Sunamoto, J. Chem. Soc., Perkin Trans. 10, 2039 (1989).

    Article  Google Scholar 

  32. L. Baldini, A. Casnati, F. Sansone, and R. Ungaro, Chem. Soc. Rev. 36, 254 (2007).

    Article  CAS  Google Scholar 

  33. S. B. Nimsea and T. Kim, Chem. Soc. Rev. 42, 366 (2013).

    Article  Google Scholar 

  34. A. Amirova, A. Tobolina, T. Kirila, A. Blokhin, A. Razina, A. Tenkovtsev, and A. Filippov, Int. J. Polym. Anal. Charact. 23 (3), 278 (2018).

    Article  CAS  Google Scholar 

  35. T. Kirila, A. Amirova, A. Blokhin, A. Tenkovtsev, and A. Filippov, Polymers 13, 2507 (2021).

    Article  CAS  Google Scholar 

  36. A. N. Blokhin, T. Yu. Kirila, N. D. Kozina, A. B. Razina, A. P. Filippov, and A. V. Tenkovtsev, Mendeleev Commun. 32, 247 (2022).

    Article  CAS  Google Scholar 

  37. A. I. Amirova, M. M. Dudkina, A. V. Tenkovtsev, and A. P. Filippov, Colloid Polym. Sci. 293, 239 (2015).

    Article  CAS  Google Scholar 

  38. Y. Katsumoto, A. Tsuchiizu, X. P. Qiu, and F. M. Winnik, Macromolecules 45 (8), 3531 (2012).

    Article  CAS  Google Scholar 

  39. Classical Light Scattering from Polymer Solutions, Ed. by P. Kratochvil (Elsevier, Amsterdam, 1987).

    Google Scholar 

  40. Light Scattering from Polymer Solutions and Nanoparticle Dispersions, Ed. by W. Schärtl (Springer, Berlin, 2007).

    Google Scholar 

  41. A. I. Amirova, O. V. Golub, T. U. Kirila, A. B. Razina, A. V. Tenkovtsev, and A. P. Filippov, Colloid Polym. Sci. 294 (6), 947 (2016).

    Article  CAS  Google Scholar 

  42. A. V. Smirnova, T. U. Kirila, M. P. Kurlykin, A. V. Tenkovtsev, and A. P. Filippov, Int. J. Polym. Anal. Charact. 22 (8), 687 (2017).

    Article  Google Scholar 

  43. M. Daoud and J. P. Cotton, J. Phys. 43, 531 (1982).

    Article  CAS  Google Scholar 

  44. I. Dimitrov, B. Trzebicka, A. H. E. Muller, A. Dworak, and C. B. Tsvetanov, Prog. Polym. Sci. 32 (11), 1275 (2007).

    Article  CAS  Google Scholar 

  45. A. A. Steinschulte, B. Schulte, M. Erberich, O. V. Borisov, and F. A. Plamper, ACS Macro Lett. 1 (4), 504 (2012).

    Article  CAS  Google Scholar 

  46. A. A. Steinschulte, B. Schulte, S. Rutten, T. Eckert, J. Okuda, M. Moller, S. Schneider, O. V. Borisov, and F. A. Plamper, Phys. Chem. Chem. Phys. 16 (10), 4917 (2014).

    Article  CAS  Google Scholar 

  47. T. U. Kirila, A. V. Smirnova, A. S. Filippov, A. B. Razina, A. V. Tenkovtsev, and A. P. Filippov, Eur. Polym. J. 120, 109215 (2019).

Download references

Funding

This work was supported by grant of the President of the Russian Federation (MK-2699.2021.1.3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yu. Kirila.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirila, T.Y., Razina, A.B., Ten’kovtsev, A.V. et al. Effect of the Structure of Arms and Way of Their Attachment to Calix[4]arene on Self-Assembly Processes in Aqueous Solutions of Thermoresponsive Star-Shaped Poly(2-alkyl-2-oxazolines) and Poly(2-alkyl-2-oxazines). Polym. Sci. Ser. C 64, 211–218 (2022). https://doi.org/10.1134/S1811238222700102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238222700102

Navigation