Skip to main content

Heat-Resistant Carbon Fiber Reinforced Plastics Based on a Copolymer of Bisphthalonitriles and Bisbenzonitrile

Abstract

New phthalonitrile resins that provide processing properties at the level of epoxy resins and composites obtained from them are discussed. The processing parameters of the resins are improved due to the discovery of reactive diluents based on bisbenzonitriles. By introducing these comonomers into the resin composition the melt viscosity is reduced to less than 100 MPa s at a temperature of 120°C, which allows one to obtain carbon fibers by modern injection techniques. The curing programs of the composite are selected in order to attain the maximum compressive strength (852 MPa). Carbon fiber reinforced plastics postcured at 375°C retain up to 90% of their mechanical properties at 400°C (τ12 = 60–80 MPa). It is first shown that prepregs can be produced from phthalonitrile resins using the melt technology and composites from them can be obtained by hot pressing. Carbon fibers possess high limiting oxygen index values (LOI > 80%). Thus, phthalonitrile resins and prepregs are developed for non-autoclave processing of carbon and glass composites suitable for operation at elevated temperatures.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. D. S. Kiva, Aviats.-Kosm. Tekh. Tekhnol. 6 (113), 5 (2014).

    Google Scholar 

  2. J. McHugh and F. Grasse, in Proceedings of the Thermosetting Resins 2018 Conference, Berlin, Germany,2018 (Berlin, 2018), p. 117.

  3. S. E. Evsyukov, T. Pohlmann, and H. D. Stenzenberger, Polym. Adv. Technol. 26, 574 (2015).

    Article  CAS  Google Scholar 

  4. A. V. Babkin, E. M. Erdni-Goryaev, A. V. Solopchenko, A. V. Kepman, and V. V. Avdeev, Polym. Adv. Technol. 27, 774 (2016).

    Article  CAS  Google Scholar 

  5. D. Kalugin, O. Borisova, M. Zaremski, E. Garina, D. Kolesov, B. Bulgakov, and V. Avdeev, Eur. Polym. J. 60, 213 (2014).

    Article  CAS  Google Scholar 

  6. S. S. Nechausov, B. A. Bulgakov, A. V. Solopchenko, A. A. Serdan, D. I. Kalugin, A. Lyalin, A. V. Kepman, and A. P. Malakho, J. Polym. Res. 23, 114 (2016).

    Article  CAS  Google Scholar 

  7. B. Bulgakov, A. Babkin, I. Makarenko, N. Tikhonov, D. Kalugin, A. Kepman, A. Malakho, and V. Avdeev, Eur. Polym. J. 73, 247 (2015).

    Article  CAS  Google Scholar 

  8. S. K. Dirlikov, High Perform. Polym. 2, 67 (1990).

    Article  CAS  Google Scholar 

  9. M. Xu, J. Hu, X. Zou, M. Liu, S. Dong, Y. Zou, and X. Liu, J. Appl. Polym. Sci. 129, 2629 (2013).

    Article  CAS  Google Scholar 

  10. A. Chernykh, J. Liu, and H. Ishida, Polymer (Guildf.) 47, 7664 (2006).

    Article  CAS  Google Scholar 

  11. A. V. Komagorkina, A. V. Orlov, I. S. Sirotin, and I. S. Sarychev, Usp. Khim. Khim. Tekhnol. 31 (11), 52 (2017).

    Google Scholar 

  12. I. S. Sirotin, I. A. Sarychev, V. V. Vorobyeva, A. A. Kuzmich, N. V. Bornosuz, D. V. Onuchin, I. Y. Gorbunova, and V. V. Kireev, Polymers (Basel, Switz.), 12, 1611 (2005).

  13. M. Laskoski, D. D. Dominguez, and T. M. Keller, J. Mater. Chem. 15, 1611 (2005).

    Article  CAS  Google Scholar 

  14. I. Hamerton, Chemistry and Technology of Cyanate Ester Resins (Blackie Acad. Prof., Glasgow, 2012).

    Google Scholar 

  15. C. Uhlig, M. Bauer, J. Bauer, O. Kahle, A. C. Taylor, and A. J. Kinloch, React. Funct. Polym. 129, 2 (2018).

    Article  CAS  Google Scholar 

  16. H. R. Lubowitz and C. H. Sheppard, US Patent No. 5116935 (1992).

  17. H. D. Stenzenberger, High Perform. Polym. 6, 165 (1994).

    Article  Google Scholar 

  18. S. B. Sastri, J. P. Armistead, and T. M. Keller, Polym. Compos. 17, 816 (1996).

    Article  CAS  Google Scholar 

  19. L. Zong, C. Liu, S. Zhang, J. Wang, and X. Jian, Polymer (Guildf.) 77, 177 (2015).

    Article  CAS  Google Scholar 

  20. Y. Luo, M. Xu, H. Pan, K. Jia, and X. Liu, Polym. Eng. Sci. 56, 150 (2016).

    Article  CAS  Google Scholar 

  21. D. D. Dominguez, H. N. Jones, and T. M. Keller, Polym. Compos. 25, 554 (2004).

    Article  CAS  Google Scholar 

  22. M. Derradji, N. Ramdani, T. Zhang, J. Wang, T. Feng, H. Wang, and W. Liu, Mater. Des. 71, 48 (2015).

    Article  CAS  Google Scholar 

  23. D. Ren, K. Li, L. Chen, S. Chen, M. Han, M. Xu, and X. Liu, Composites, Part B 177, 107419 (2019).

    Article  CAS  Google Scholar 

  24. G. Wang, Y. Han, Y. Guo, S. Wang, J. Sun, H. Zhou, and T. Zhao, Ind. Eng. Chem. Res. 58, 9921 (2019).

    Article  CAS  Google Scholar 

  25. X. Yang, K. Li, M. Xu, and X. Liu, IOP Conf. Ser.: Earth Environ. Sci. 170 (4), 042012 (2018).

  26. B.-G. Sun, Q. Lei, Y. Guo, H.-Q. Shi, J.-B. Sun, K.‑X. Yang, H. Zhou, Y.-Q. Li, N. Hu, H. Wang, and S.-Y. Fu, Composites, Part B 166, 681 (2019).

    Article  CAS  Google Scholar 

  27. M. Derradji, A. Zegaoui, A. Medjahed, W. Liu, and A. Henniche, Polym. Compos. 41, 134 (2020).

    Article  CAS  Google Scholar 

  28. D. D. Dominguez and T. M. Keller, High Perform. Polym. 18, 283 (2006).

    Article  CAS  Google Scholar 

  29. M. Laskoski, J. S. Clarke, A. Neal, H. L. Ricks-Laskoski, W. J. Hervey, and T. M. Keller, J. Polym. Sci., Part A: Polym. Chem. 54, 1639 (2016).

    Article  CAS  Google Scholar 

  30. Z. Zhang, Z. Li, H. Zhou, X. Lin, T. Zhao, M. Zhang, and C. Xu, J. Appl. Polym. Sci. 131, 40919 (2014).

    Google Scholar 

  31. Y. Han, D. Tang, G. Wang, Y. Guo, H. Zhou, W. Qiu, and T. Zhao, Eur. Polym. J. 111, 104 (2019).

    Article  CAS  Google Scholar 

  32. M. Laskoski, A. Neal, T. M. Keller, D. D. Dominguez, C. A. Klug, and A. P. Saab, J. Polym. Sci., Part A: Polym. Chem. 52, 1662 (2014).

    Article  CAS  Google Scholar 

  33. A. V. Babkin, E. B. Zodbinov, B. A. Bulgakov, A. V. Kepman, and V. V. Avdeev, Eur. Polym. J. 66, 452 (2015).

    Article  CAS  Google Scholar 

  34. B. A. Bulgakov, A. V. Babkin, P. B. Dzhevakov, A. A. Bogolyubov, A. V. Sulimov, A. V. Kepman, Yu. G. Kolyagin, D. V. Guseva, V. Yu. Rudyak, and A. V. Chertovich, Eur. Polym. J. 84, 205 (2016).

    Article  CAS  Google Scholar 

  35. A. V. Babkin, B. A. Bulgakov, A. V. Kepman, E. B. Zodbinov, and V. V. Avdeev, Polym. Sci., Ser. B 58, 298 (2016).

    Article  CAS  Google Scholar 

  36. B. A. Bulgakov, A. V. Babkin, A. A. Bogolyubov, E. S. Afanas’eva, and A. V. Kepman, Russ. Chem. Bull. 65, 287 (2016).

    Article  CAS  Google Scholar 

  37. P. B. Dzhevakov, R. F. Korotkov, B. A. Bulgakov, A. V. Babkin, A. V. Kepman, and V. V. Avdeev, Mendeleev Commun. 26. 527 (2016).

    Article  CAS  Google Scholar 

  38. M. V. Yakovlev, O. S. Morozov, E. S. Afanaseva, B. A. Bulgakov, A. V. Babkin, and A. V. Kepman, React. Funct. Polym. 146, 104409 (2020).

    Article  CAS  Google Scholar 

  39. B. A. Bulgakov, A. V. Sulimov, A. V. Babkin, I. A. Timoshkin, A. V. Solopchenko, A. V. Kepman, V. V. Avdeev, J. Compos. Mater. 51, 4157 (2017).

    Article  CAS  Google Scholar 

  40. B. A. Bulgakov, K. S. Belsky, S. S. Nechausov, E. S. Afanaseva, A. V. Babkin, A. V. Kepman, and V. V. Avdeev, Mendeleev Commun. 28, 44 (2018).

    Article  CAS  Google Scholar 

  41. V. E. Terekhov, V. V. Aleshkevich, E. S. Afanaseva, S. S. Nechausov, A. V. Babkin, B. A. Bulgakov, A. V. Kepman, V. V. Avdeev, React. Funct. Polym. 139, 34 (2019).

    Article  CAS  Google Scholar 

  42. T. M. Keller and D. D. Dominguez, Polymer (Guildf.) 46, 4614 (2005).

    Article  CAS  Google Scholar 

  43. B. A. Bulgakov, A. V. Sulimov, A. V. Babkin, A. V. Kepman, A. P. Malakho, and V. V. Avdeev, J. Appl. Polym. Sci. 133, 44786 (2017).

    Google Scholar 

  44. K. S. Belsky, A. V. Sulimov, B. A. Bulgakov, A. V. Babkin, and A. V. Kepman, Data Brief 13, 10 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. V. E. Terekhov, V. V. Aleshkevich, E. S. Afanaseva, S. S. Nechausov, A. V. Babkin, B. A. Bulgakov, A. V. Kepman, and V. V. Avdeev, Data Brief 28, 104858 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. ASM International. Handbook Committee, Ed. by D. B. Miracle and S. L. Donaldson (ASM Handbook, 2001), Vol. 21.

    Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (State Contract no. 14.607.21.0204, contract identifier ID RFMEFI60718X0204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Timoshkin.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timoshkin, I.A., Aleshkevich, V.V., Afanas’eva, E.S. et al. Heat-Resistant Carbon Fiber Reinforced Plastics Based on a Copolymer of Bisphthalonitriles and Bisbenzonitrile. Polym. Sci. Ser. C 62, 172–182 (2020). https://doi.org/10.1134/S1811238220020150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238220020150