Skip to main content
Log in

Synthesis, Structure and Properties of Poly(1-trimethylsilyl-1-propyne) Obtained with NbBr5- and TaBr5-Based Catalytic Systems

  • Published:
Polymer Science, Series C Aims and scope Submit manuscript

Abstract

In this work, the polymerization of 1-trimethylsilyl-1-propyne [TMSP] using catalytic systems based on pentabromide Nb(V) and Ta(V) with organometallic cocatalysts Ph3Bi, Ph4Sn, Bu4Sn, Ph3SiH, and Et3SiH was investigated. The use of NbBr5-based catalytic systems has strongly marked cis-stereospecificity and gives highly cis-enriched poly(1-trimethylsilyl-1-propyne) [PTMSP] (content of cis-units above 70%), whereas the use of TaBr5-based catalytic systems leads to the formation of PTMSP with mixed cis-/trans-composition (content of cis-units from 50 to 65%).With increasing cis-content, solvent resistance of PTMSP increases significantly. PTMSP with a content of cis-units above 70% obtained on NbBr5-containing systems in cyclohexane acquires resistance to aliphatic and aromatic hydrocarbons, and cis-regular PTMSP obtained on NbBr5-based systems in toluene is totally insoluble in any of the organic solvents. The results of wide-angle X-ray diffraction indicate an increase in the packing density of the polymer during the transition from a mixed configuration to a cis-regular one. Durable PTMSP film membranes exhibit ultra-high permeability coefficients for individual gases (e.g., \({{P}_{{{{{\text{O}}}_{{\text{2}}}}}}}\) = 8500–11000 barrer, \({{\alpha }_{{{{{\text{O}}}_{{\text{2}}}}{\text{/}}{{{\text{N}}}_{{\text{2}}}}}}}\) = 1.5–1.9). According to the low-temperature Ar sorption, PTMSP synthesized with NbBr5- and TaBr5-based catalytic systems has high BET surface areas in the range of 870–1050 m2/g, high intrinsic microporosity, and higher gas permeability coefficients of PTMSP correlate with BET surface area growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. T. Masuda, Polym. Rev. 57, 1 (2017).

    Article  CAS  Google Scholar 

  2. Y. Yampolskii, Macromolecules 45, 3298 (2012).

    Article  CAS  Google Scholar 

  3. Y. Yampolskii, Polym. Rev. 57, 200 (2017).

    Article  CAS  Google Scholar 

  4. K. Nagai, T. Masuda, T. Nakagawa, B. D. Freeman, and I. Pinnau, Prog. Polym. Sci. 26, 721 (2001).

    Article  CAS  Google Scholar 

  5. T. Masuda, B. Z. Tang, A. Tanaka, and T. Higashimura, Macromolecules 19, 1459 (1986).

    Article  CAS  Google Scholar 

  6. Y. Ichiraku, S. A. Stern, and T. Nakagawa, J. Membr. Sci. 34, 5 (1987).

    Article  CAS  Google Scholar 

  7. R. Srinivasan, S. R. Auvil, and P. M. Burban, J. Membr. Sci. 86, 67 (1994).

    Article  CAS  Google Scholar 

  8. D. Hoffmann, M. Heuchel, Yu. Yampolskii, V. Khotimskii, and V. Shantarovich, Macromolecules 35, 2129 (2002).

    Article  Google Scholar 

  9. S. Thomas, I. Pinnau, N. Du, and M. D. Guiver, J. Membr. Sci. 333, 125 (2009).

    Article  CAS  Google Scholar 

  10. D. S. Pope, W. J. Koros, and H. B. Hopfenberg, Macromolecules 27, 5839 (1994).

    Article  CAS  Google Scholar 

  11. L. G. Toy, K. Nagai, B. D. Freeman, I. Pinnau, Z. He, T. Masuda, M. Teraguchi, and Yu. P. Yampolskii, Macromolecules 33, 2516 (2000).

    Article  CAS  Google Scholar 

  12. A. Morisato, H. C. Shen, S. S. Sankar, B. D. Freeman, I. Pinnau, and C. G. Casillas, J. Polym. Sci., Part B: Polym. Phys. 34, 2209 (1996).

    Article  CAS  Google Scholar 

  13. I. Pinnau and L. G. Toy, J. Membr. Sci. 116,199 (1996).

    Article  CAS  Google Scholar 

  14. A. Morisato and I. Pinnau, J. Membr. Sci. 121,243 (1996).

    Article  CAS  Google Scholar 

  15. T. C. Merkel, B. D. Freeman, R. J. Spontak, Z. He, I. Pinnau, P. Meakin, and A. J. Hill, Chem. Mater.15,109 (2003).

    Article  CAS  Google Scholar 

  16. K. Takada, H. Matsuya, T. Masuda, and T. Higashimura, J. Appl. Polym. Sci. 30, 1605 (1985).

    CAS  Google Scholar 

  17. T. Masuda, E. Isobe, T. Higashimura, and T. Takada, J. Am. Chem. Soc. 105, 7473 (1983).

    Article  CAS  Google Scholar 

  18. N. A. Plate, A. K. Bokarev, N. E. Kaliuzhnyi, E. G. Litvinova, V. S. Khotimskii, V. V. Volkov, and Yu. P. Yampolskii, J. Membr. Sci. 60, 13 (1991).

    Article  CAS  Google Scholar 

  19. T. Masuda, E. Isobe, and T. Higashimura, Macromolecules 18, 841 (1985).

    Article  CAS  Google Scholar 

  20. T. Masuda, E. Isobe, T. Hamano, and T. Higashimura, Macromolecules 19, 2448 (1986).

    Article  CAS  Google Scholar 

  21. J. Fujimori, T. Masuda, and T. Higashimura, Polym. Bull. 19, 1 (1988).

    Google Scholar 

  22. V. S. Khotimsky, M. V. Tchirkova, E. G. Litvinova, A. I. Rebrov, and G. N. Bondarenko, J. Polym. Sci., Part A: Polym. Chem. 41, 2133 (2003).

    Article  CAS  Google Scholar 

  23. W. Yave, K.-V.Peinemann, S. Shishatskiy, V. Khotimskiy, M. Chirkova, S. Matson, E. Litvinova, and N. Lecerf, Macromolecules 40, 8991 (2007).

    Article  CAS  Google Scholar 

  24. T. J. Katz, S. J. Lee, and M. A. Shippey, J. Mol. Catal. 8, 219 (1980).

    Article  CAS  Google Scholar 

  25. T. J. Katz and S. J. Lee, J. Am. Chem. Soc. 102, 422 (1980).

    Article  CAS  Google Scholar 

  26. Y. Okano, T. Masuda, and T. Higashimura, Polym. J. 14, 477 (1982).

    Article  CAS  Google Scholar 

  27. J. F. Kunzler and V. Percec, J. Polym. Sci., Part A: Polym. Chem. 28, 1221 (1990).

  28. E. G. Litvinova, V. M. Melekhov, N. V. Petrushanskaya, G. V. Rosheva, V. B. Fedotov, V. Sh. Feldblum, and V. S. Khotimskiy, RF Patent No. 1823457 (1993).

  29. A. M. Shishatskii, Yu. P. Yampolskii, and K.-V. Peinemann, J. Membr. Sci. 112, 275 (1996).

    Article  CAS  Google Scholar 

  30. F. Fairbrother, J. F. Nixon, and H. Prophet, J. Less-Common Met. 9, 434 (1965).

    Article  CAS  Google Scholar 

  31. F. Fairbrother, The Chemistry of Niobium and Tantalum (Elsevier, Amsterdam, 1967).

    Google Scholar 

  32. Yu. K. Ovchinnikov, E. M. Antipov, G. S. Markova, and N. F. Bakeev, Macromol. Chem. 177, 1567 (1976).

    Article  CAS  Google Scholar 

  33. V. M. Polikarpov, E. M. Antipov, I. V. Razumovskaya, I. S. Bryantseva, E. G. Litvinova, M. V. Chirkova, Yu. M. Korolev, V. S. Khotimskii, and E. E. Antipov, Polym. Sci., Ser. A 44, 343 (2002).

    Google Scholar 

  34. S. Lowell, J. E. Shields, M. A. Thomas, and M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density (Springer, New York, 2004).

    Book  Google Scholar 

  35. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouqerol, and T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 18-13-00334).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Matson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matson, S.M., Kossov, A.A., Makrushin, V.P. et al. Synthesis, Structure and Properties of Poly(1-trimethylsilyl-1-propyne) Obtained with NbBr5- and TaBr5-Based Catalytic Systems. Polym. Sci. Ser. C 61, 76–85 (2019). https://doi.org/10.1134/S1811238219010120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238219010120

Navigation