Models of the Conformational Behavior of Polymers in Mixed Solvents

Abstract

Theoretical models of the conformational behavior of flexible polymer chains in mixed solvents enunciated in the world literature during the last decade are critically reviewed. Models describing different mechanisms of coil-to-globule transitions in a good solvent induced by cosolvent addition are highlighted. Special attention is given to the analysis of theoretical approaches to describing the collapse of polymer chains in binary mixtures of good solvents. The review addresses researchers engaged in polymer physics and chemistry and materials scientists involved in the design of smart polymers.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    I. Y. Galaev and B. Mattiasson, Trends Biotechnol. 17, 335 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    P. Bawa, V. Pillay, Y. E. Choonara, and L. C. Toit, Biomed. Mater. 4 (2009).

  3. 3.

    A. Bajpai, S. K. Shukla, S. Bhanu, and S. Kankane, Prog. Polym. Sci. 33, 1088 (2008).

    Article  CAS  Google Scholar 

  4. 4.

    A. Kumar, A. Srivastava, I. Y. Galaev, and B. Mattiasson, Prog. Polym. Sci. 32, 1205 (2007).

    Article  CAS  Google Scholar 

  5. 5.

    P. Bawa, V. Pillay, Y. E. Choonara, and L. C. Toit, Biomed. Mater. 4 (2009).

  6. 6.

    S. D. Fitzpatrick, L. E. Fitzpatrick, A. Thakur, M. A. J. Mazumder, and H. Sheardown, Expert Rev. Med. Devices 9, 339 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    J. Kost and R. Langer, Adv. Drug Delivery Rev. 46, 125 (2001).

    Article  CAS  Google Scholar 

  8. 8.

    R. Gopalakrishnan, A. I. Frolov, L. Knerr, W. J. Drury, and E. Valeur, J. Med. Chem. 59, 9599 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Z. Suo, Acta Mech. Solida Sin. 23, 549 (2010).

    Article  Google Scholar 

  10. 10.

    S. Chaterji, I. K. Kwon, and K. Park, Prog. Polym. Sci. 32, 1083 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    A. Kumar, A. Srivastava, I. Yu. Galaev, and B. Mattiasson, Prog. Polym. Sci. 32, 1205 (2007).

    Article  CAS  Google Scholar 

  12. 12.

    L. Y. Chu, R. Xie, X. J. Ju, and W. Wang, Smart Hydrogel Functional Materials (Chem. Industry Press, Beijing, 2013).

    Google Scholar 

  13. 13.

    W. Richtering, “Smart Colloidal Materials,” in Progress in Colloid and Polymer Science, Ed. By F. Kremer and W. Richtering (Springer, Berlin; Heidelberg; New York, 2006), Vol.133.

  14. 14.

    G. Haran, Curr. Opin. Struct. Biol. 22, 14 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    G. Ziv, D. Thirumalai, and G. Haran, Phys. Chem. Chem. Phys. 11, 83 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Functional Thin Films and Nanostructures for Sensors, Ed. by A. Zribi and J. Fortin (Springer, New York, 2009).

  17. 17.

    Y. Yu, R. A. L. de la Cruz, B. D. Kieviet, H. Gojzewski, A. Pons, G. J. Vancso, and S. de Beer, Nanoscale 9, 1670 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    R. Dias and B. Lindman, DNA Interactions with Polymers and Surfactants (Wiley, Hoboken, 2008).

    Google Scholar 

  19. 19.

    P. G. Koutsoukos, “Trends in Colloid and Interface Science XV,” in Progress in Colloid and Polymer Science, Ed. by F. Kremer and G. Lagaly (Springer, Berlin, 2001), Vol.118.

  20. 20.

    V. B. Teif and K. Bohinc, Prog. Biophys. Mol. Biol. 105, 208 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    W. M. Gelbart, R. F. Bruinsma, P. A. Pincus, and V. A. Parsegian, Phys. Today 53, 38 (2000).

    Article  CAS  Google Scholar 

  22. 22.

    V. V. Vasilevskaya, A. R. Khokhlov, Y. Matsuzawa, and K. Yoshikawa, J. Chem. Phys. 102, 6595 (1995).

    Article  CAS  Google Scholar 

  23. 23.

    Y. T. Maeda, T. Tlusty, and A. Libchaber, Proc. Natl. Acad. Sci. U. S. A. 109, 17972 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    I. M. Lifshitz, Sov. Phys. JETP 28, 55 (1975).

    Google Scholar 

  25. 25.

    M. A. Moore, J. Phys. A: Math. Gen. 10, 305 (1977).

    Article  Google Scholar 

  26. 26.

    T. M. Birshtein and V. A. Pryamitsyn, Macromolecules 24, 1554 (1991).

    Article  CAS  Google Scholar 

  27. 27.

    E. B. Zhulina, O. V. Borisov, V. A. Pryamitsyn, and T. M. Birshtein, Macromolecules 24, 140 (1991).

    Article  CAS  Google Scholar 

  28. 28.

    Ye. B. Zhulina, O. V. Borisov, and T. M. Birshtein, Polym. Sci. U. S. S. R. 30 (4), 780 (1988).

    Article  Google Scholar 

  29. 29.

    T. M. Birshtein and V. A. Pryamitsyn, Polym. Sci. U. S. S. R. 29, 2039 (1987).

    Article  Google Scholar 

  30. 30.

    A. Yu. Grosberg and D. V. Kuznetsov, Macromolecules 25, 1970 (1992).

    Article  CAS  Google Scholar 

  31. 31.

    P. G. de Gennes, J. Phys. Lett. 36, 55 (1975).

    Article  Google Scholar 

  32. 32.

    I. M. Lifshitz and A. Yu. Grosberg, Sov. Phys. JETP 38, 1198 (1974).

    Google Scholar 

  33. 33.

    M. Muthukumar, J. Chem. Phys. 81, 6272 (1984).

    Article  Google Scholar 

  34. 34.

    I. C. Sanchez, Macromolecules 12, 980 (1979).

    Article  CAS  Google Scholar 

  35. 35.

    A. R. Khokhlov, Phys. A (Amsterdam, Neth.) 105, 357 (1981).

    Article  Google Scholar 

  36. 36.

    A. L. Kholodenko and K. F. Freed, J. Phys. A: Math. Gen. 17, 2703 (1984).

    Article  CAS  Google Scholar 

  37. 37.

    R. P. Sear, J. Chem. Phys. 107, 18 (1997).

    Article  Google Scholar 

  38. 38.

    A. Matsuyama and F. Tanaka, J. Chem. Phys. 94, 781 (1991).

    Article  CAS  Google Scholar 

  39. 39.

    S. Bekiranov, R. Bruinsma, and P. Pincus, Europhys. Lett. 24 (3), 183 (1993).

    Article  CAS  Google Scholar 

  40. 40.

    M. V. Tamm and I. Ya. Erukhimovich, Polym. Sci., Ser. A 44, 196 (2002).

    Google Scholar 

  41. 41.

    Yu. A. Budkov, I. I. Vyalov, A. L. Kolesnikov, N. Georgi, G. N. Chuev, and M. G. Kiselev, J. Chem. Phys. 141, 204904 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Yu. A. Budkov, A. L. Kolesnikov, N. Georgi, and M. G. Kiselev, Europhys. Lett. 109, 36005 (2015).

    Article  CAS  Google Scholar 

  43. 43.

    A. L. Kolesnikov, Yu. A. Budkov, E. Basharova, and M. G. Kiselev, Soft Matter 13, 4363 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Yu. A. Budkov and A. L. Kolesnikov, Eur. Phys. J. E: Soft Matter Biol. Phys. 39, 110 (2016).

    Article  CAS  Google Scholar 

  45. 45.

    Yu. A. Budkov, A. L. Kolesnikov, and M. G. Kiselev, J. Chem. Phys. 143, 201102 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Yu. A. Budkov, N. N. Kalikin, and A. L. Kolesnikov, Eur. Phys. J. E: Soft Matter Biol. Phys. 40, 47 (2017).

    Article  CAS  Google Scholar 

  47. 47.

    Yu. D. Gordievskaya, Yu. A. Budkov, and E. Y. Kramarenko, Soft Matter 14, 3232 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell Univ. Press, Ithaca, 1979).

    Google Scholar 

  49. 49.

    J. dez Cloizeaux and G. Jannink, Polymers in Solution. Their Modelling and Structure (Clarendon Press, Oxford, 1990).

    Google Scholar 

  50. 50.

    A. Y. Grosberg and A. R. Khokhlov, in Statistical Physics of Macromolecules (AIP Press, Woodbury, 1994).

    Google Scholar 

  51. 51.

    T. L. Hill, in An Introduction to Statistical Thermodynamics (Courier Dover Publ., Mineola, 1960).

    Google Scholar 

  52. 52.

    D. R. Batchelor, D. Paschek, and A. E. Garcia, J. Am. Chem. Soc. 132, 2338 (2010).

    Article  CAS  Google Scholar 

  53. 53.

    J. D. Canchi, A. Olteanu, A. Tripathy, and G. J. Pielak, J. Am. Chem. Soc. 126, 1959 (2004).

    Google Scholar 

  54. 54.

    D. R. Canchi and A. E. Garcia, Annu. Rev. Phys. Chem. 64, 273 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. 55.

    P. Das, Z. Xia, and R. Zhou, Langmuir 29, 4877 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. 56.

    S. Matysiak and P. Das, Phys. Rev. Lett. 111, 058103 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. 57.

    Y. Zhang and P. S. Cremer, Annu. Rev. Phys. Chem. 61, 63 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. 58.

    J. Heyda, A. Muzdalo, and J. Dzubiella, Macromolecules 46, 1231 (2013).

    Article  CAS  Google Scholar 

  59. 59.

    K. Odagiri and K. Seki, J. Chem. Phys. 143, 134903 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. 60.

    Yu. A. Budkov, A. L. Kolesnikov, N. Georgi, and M. G. Kiselev, J. Chem. Phys. 141, 014902 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. 61.

    Y. A. Budkov and M. G. Kiselev, J. Phys.: Condens. Matter 30, 043001 (2018).

    Google Scholar 

  62. 62.

    B. A. Wolf and M. M. Willms, Macromol. Chem. 119, 2265 (1978).

    Article  Google Scholar 

  63. 63.

    H. G. Schild, M. Muthukumar, and D. A. Tirrell, Macromolecules 24, 948 (1991).

    Article  CAS  Google Scholar 

  64. 64.

    F. M. Winnik, M. F. Ottaviani, S. H. Bossmann, M. Garcia-Garibay, and N. J. Turro, Macromolecules 25, 6007 (1992).

    Article  CAS  Google Scholar 

  65. 65.

    G. Zhang and C. Wu, Phys. Rev. Lett. 86, 822 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. 66.

    J. Walter, J. Sehrt, J. Vrabec, and H. Hasse, J. Phys. Chem. B 116, 5251 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. 67.

    A. Hiroki, Y. Maekawa, M. Yoshida, K. Kubota, and R. Katakai, Polymer 42, 1863 (2001).

    Article  CAS  Google Scholar 

  68. 68.

    I. Bischofberger, D. C. E. Calzolari, and V. Trappe, Soft Matter 42, 8288 (2014).

    Article  CAS  Google Scholar 

  69. 69.

    C. H. Hofmann, S. Grobelny, M. Erlkamp, R. Winter, and W. Richtering, Polymer 55, 2000 (2014).

    Article  CAS  Google Scholar 

  70. 70.

    C. Scherzinger, A. Balaceanu, C. H. Hofmann, A. Schwarz, K. Leonhard, A. Pich, and W. Richtering, Polymer 62, 50 (2015).

    Article  CAS  Google Scholar 

  71. 71.

    T. Wang, G. Liu, G. Zhang, and V. S. J. Craig, Langmuir 28, 1893 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. 72.

    D. Mukherji, M. Wagner, M. D. Watson, S. Winzen, T. E. de Oliveira, C. M. Marques, and K. Kremer, Soft Matter 12, 7995 (2012).

    Article  CAS  Google Scholar 

  73. 73.

    M. A. Schroer, J. Michalowsky, B. Fischer, J. Smiatek, and G. Grubel, Phys. Chem. Chem. Phys. 18, 31459 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. 74.

    K. Kyriakos, M. Philipp, L. Silvi, W. Lohstroh, W. Petry, P. Muller-Buschbaum, and C. M. Papadakis, J. Phys. Chem. B 120, 4679 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. 75.

    T. E. de Oliveira, P. A. Netz, D. Mukherji, and K. Kremer, Soft Matter 11, 8599 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. 76.

    D. Mukherji, M. Wagner, M. D. Watson, S. Winzen, T. E. de Oliveira, C. M. Marques, and K. Kremer, Soft Matter 13, 2292 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. 77.

    N. F. A. van der Vegt and F. Rodriguez-Ropero, Soft Matter 13, 2289 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. 78.

    F. Tanaka, T. Koga, and F. M. Winnik, Phys. Rev. Lett. 101, 028302 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. 79.

    D. Mukherji, C. M. Marques, and K. Kremer, Nat. Commun. 5, 4882 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    D. Mukherji, C. M. Marques, T. Stuehn, and K. Kremer, J. Chem. Phys. 142, 114903 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. 81.

    J. Dudowicz, K. F. Freed, and J. F. Douglas, J. Chem. Phys. 143, 131101 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. 82.

    J. Dudowicz, K. F. Freed, and J. F. Douglas, J. Phys. Chem. B 120, 5753 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. 83.

    F. Rodriguez-Ropero, T. Hajari, and N. F. A. van der Vegt, J. Phys. Chem. B 119, 15780 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. 84.

    J. Sommer, Langmuir 50, 2219 (2017).

    CAS  Google Scholar 

  85. 85.

    X. Chen, W. Feng, X. Han, and H. Liu, Langmuir 33, 11446 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. 86.

    Yu. A. Budkov, A. L. Kolesnikov, N. N. Kalikin, and M. G. Kiselev, Eur. Phys. Lett 114, 46004 (2016).

    Article  CAS  Google Scholar 

  87. 87.

    Yu. A. Budkov and A. L. Kolesnikov, Soft Matter 13, 8362 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. 88.

    P. Flory, in Statistical Mechanics of Chain Molecules (Wiley-Intersci. Press, New York, 1969).

    Google Scholar 

  89. 89.

    M. Fixman, J. Chem. Phys. 36, 310 (1962).

    Article  CAS  Google Scholar 

  90. 90.

    Yu. A. Budkov and A. L. Kolesnikov, J. Stat. Mech.: Theory Exp. 2016, 103211 (2016).

    Article  Google Scholar 

  91. 91.

    V. V. Vasilevskaya, V. A. Ryabina, S. G. Starodubtsev, and A. R. Khokhlov, Vysokomol. Soedin., Ser. A 31 (4) (1989).

    Google Scholar 

  92. 92.

    T. M. Birshtein and Yu. V. Lyatskaya, Macromol. Symp. 81, 249 (1994).

    Article  CAS  Google Scholar 

  93. 93.

    T. M. Birshtein and Yu. V. Lyatskaya, Macromolecules 27, 1256 (1994).

    Article  CAS  Google Scholar 

  94. 94.

    T. M. Birshtein and Yu. V. Lyatskaya, Colloids Surf., A 86, 77 (1994).

    Article  CAS  Google Scholar 

  95. 95.

    T. M. Birshtein, E. B. Zhulina, and A. A. Mercurieva, Macromol. Theory Simul. 9, 47 (2000).

    Article  CAS  Google Scholar 

  96. 96.

    A. A. Mercurieva, F. A. M. Leermakers, T. M. Birshtein, G. J. Fleer, and E. B. Zhulina, Macromolecules 33, 1072 (2000).

    Article  CAS  Google Scholar 

  97. 97.

    T. M. Birshtein, A. A. Mercurieva, and E. B. Zhulina, Macromol. Theory Simul. 10, 719 (2001).

    Article  CAS  Google Scholar 

  98. 98.

    V. M. Amoskov, T. M. Birshtein, and A. A. Mercurieva, Macromol. Theory Simul. 15, 46 (2006).

    Article  CAS  Google Scholar 

  99. 99.

    T. M. Birshtein and V. M. Amoskov, Vysokomol. Soedin., Ser. C 42 (12), 2286 (2000).

    CAS  Google Scholar 

  100. 100.

    G. A. Mansoori, N. F. Carnahan, K. E. Starling, and T. W. Leland, J. Chem. Phys. 54, 1523 (1971).

    Article  CAS  Google Scholar 

  101. 101.

    J. P. Hansen and I. R. McDonald, in Theory of Simple Liquids (Academic Press, London; New York; San Francisco, 1976).

    Google Scholar 

  102. 102.

    A. A. Mercurieva, T. M. Birshtein, E. B. Zhulina, P. Iakovlev, J. van Male, and F. A. M. Leermakers, Macromolecules 35 (12), 4739 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Budkov.

Additional information

Original Russian Text © Yu.A. Budkov, A.L. Kolesnikov, 2018, published in Vysokomolekulyarnye Soedineniya, Seriya C, 2018, Vol. 60, No. 2, pp. 249–261.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Budkov, Y.A., Kolesnikov, A.L. Models of the Conformational Behavior of Polymers in Mixed Solvents. Polym. Sci. Ser. C 60, 148–159 (2018). https://doi.org/10.1134/S1811238218020030

Download citation