Polymer Science, Series C

, Volume 59, Issue 1, pp 3–10 | Cite as

Polymer gels as artificial soft tissue

Article
  • 78 Downloads

Abstract

Soft tissue consists a main body of biological systems. It is made of hydrogels mainly composed of extra cellular matrix (ECM), which is the three-dimensional highly organized and inter-woven network of proteins and polysaccharides. ECM has three symbolic roles. They are pertinent and excellent mechanical performance, extremely low friction, and effective and selective transportation of solute molecules for cell viability. One of the important goals for gel science would be to design and create hydrogels with critical parameters, which natural tissues possess and eventually to replace them with artificial one.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Osada and K. Kajiwara, Gels Handbook (Academic Press, New York, 2001).Google Scholar
  2. 2.
    Y. Tanaka, I. Nishio, S. T. Sun, and S. V. Nishio, Science 218, 467 (1973).CrossRefGoogle Scholar
  3. 3.
    Y. Osada, H. Okuzaki, and H. Hori, Nature 355, 242 (1992).CrossRefGoogle Scholar
  4. 4.
    Y. Osada and S. Ross-Murphy, Sci. Am. 268, 82 (1993).CrossRefGoogle Scholar
  5. 5.
    Y. Osada and J. P. Gong, Adv. Mater. 10, 827 (1998).CrossRefGoogle Scholar
  6. 6.
    O. Wichterle, “Hydrogels”, in Encyclopedia of Polymer Science and Technology, Vol. 15, Ed. by H. F. Mark, N. G. Gaylord and N. Bikanes (Interscience, New York, 1971), p. 273.Google Scholar
  7. 7.
    P. J. Flory, Principles of Polymer Chemistry (Cornell Univ. Press, Ithaca, 1953), Chap. 11.Google Scholar
  8. 8.
    Y. Okumura and K. Ito, Adv. Mater. 13, 485 (2001).CrossRefGoogle Scholar
  9. 9.
    K. Haraguchi and T. Takehisa, Adv. Mater. 14, 1120 (2002).CrossRefGoogle Scholar
  10. 10.
    J. P. Gong, Y. Katsuyama, T. Kurokawa, and Y. Osada, Adv. Mater. 15, 1155 (2003).CrossRefGoogle Scholar
  11. 11.
    A. Nakayama, A. Kakugo, J. P. Gong, Y. Osada, M. Takai. T. Erata, and S. Kawano, Adv. Funct. Mater. 14, 1124 (2004).CrossRefGoogle Scholar
  12. 12.
    R. Kishi, K. Hiroki, T. Tominaga, K.I. Sano, H. Okuzaki, J. G. Martinez, T. F. Otero, and Y. Osada, J. Polym. Sci., Part B: Polym. Phys. 50, 790 (2012).CrossRefGoogle Scholar
  13. 13.
    R. Kishi, K. Kubota, T. Miura, T. Yamaguchi, H. Okuzaki, and Y. Osada, J. Mater. Chem. C 2014(2), 736 (2014).CrossRefGoogle Scholar
  14. 14.
    J. P. Gong, M. Higa, Y. Iwasaki, Y. Katsuyama, and Y. Osada, J. Phys. Chem. B 101, 5487 (1997).CrossRefGoogle Scholar
  15. 15.
    J. P. Gong, T. Kurokawa, T. Narita, G. Kagata, Y. Osada, G. Nishimura, and M. Kinjo, J. Am. Chem. Soc. 123, 5582 (2001).CrossRefGoogle Scholar
  16. 16.
    D. Kaneko, T. Tada, T. Kurokawa, J. P. Gong, and Y. Osada, Adv. Mater. 17, 535 (2005).CrossRefGoogle Scholar
  17. 17.
    W. A. Hodge, R. S. Fijian, K. L. Carlson, R. G. Burgess, W. H. Harris, and R. W. Mann, Proc. Natl. Acad. Sci. U. S. A. 83, 2879 (1986)CrossRefGoogle Scholar
  18. 18.
    C. W. McCutchen, Lubrication of Joints, the Joints and Synovial Fluid (Academic Press, New York, 1978).Google Scholar
  19. 19.
    B. N. J. Presson, Sliding Friction: Physical Principles and Applications (Springer, Berlin, 1998), 2nd ed.CrossRefGoogle Scholar
  20. 20.
    Y. Ohsedo, R. Takashina, J. P. Gong, and Y. Osada, Langmiur 20, 6549 (2004).CrossRefGoogle Scholar
  21. 21.
    J. P. Gong, Y. Iwasaki, Y. Osada, K. Kurihara, and Y. Hamai, J. Phys. Chem. B 103, 6001 (1999).Google Scholar
  22. 22.
    J. P. Gong, G. Kagata, and Y. Osada, J. Phys. Chem. B 103, 6007 (1999).CrossRefGoogle Scholar
  23. 23.
    J. P. Gong and Y. Osada, J. Chem. Phys. 109, 8062 (1998).CrossRefGoogle Scholar
  24. 24.
    A. Kii, J. Xu, J.P. Gong, Y. Osada, and X. M. Zhang, J. Phys. Chem. B 105, 4565 (2001).CrossRefGoogle Scholar
  25. 25.
    T. Narita, A. Hirai, J. Xu, J. P. Gong, and Y. Osada, Biomacromolecules 1, 162 (2000).CrossRefGoogle Scholar
  26. 26.
    J. P. Gong, T. Kurokawa, T. Narita, G. Kagata, Y. Osada, G. Nishimura, and M. Kinjo, J. Am. Chem. Soc. 123, 5582 (2001).CrossRefGoogle Scholar
  27. 27.
    M. R. Wattenbarger, V. A. Bloomfield, Z. Bu, and P. S. Russo, Macromolecules 25, 5263 (1992).CrossRefGoogle Scholar
  28. 28.
    K. A. Johnson, G. B. Westermann-Clark, and D. O. Shah, Langmuir 5, 932 (1989).CrossRefGoogle Scholar
  29. 29.
    N. P. Lin and W. M. Deen, J. Colloid Interface Sci. 153, 483 (1992).CrossRefGoogle Scholar
  30. 30.
    E. M. Johnson, D. A. Berk, R. K. Jain, and W. M. Deen, Biophys. J. 68, 1561 (1995).CrossRefGoogle Scholar
  31. 31.
    X. Zhang, N. Hirota, T. Narita, J. P. Gong, and Y. Osada, J. Phys. Chem. B 103, 6069 (1999).CrossRefGoogle Scholar
  32. 32.
    N. Hirota, Y. Kumaki, T. Narita, J. P. Gong, and Y. Osada, J. Phys. Chem. B 104, 9898 (2000).CrossRefGoogle Scholar
  33. 33.
    D. S. Clague and R. J. Phillips, Phys. Fluids 8, 1720 (1996).CrossRefGoogle Scholar
  34. 34.
    D. S. Tsai and W. Strieder, Chem. Eng. Commun. 40, 207 (1985).CrossRefGoogle Scholar
  35. 35.
    J. P. Gong, N. Hirota, A. Kakugo, T. Narita, and Y. Osada, J. Phys. Chem. B 104, 9904 (2000)CrossRefGoogle Scholar
  36. 36.
    P. G. de Gennes, Scaling Concepts in Polymers Physics (Cornell Univ. Press, Ithaca, 1979).Google Scholar
  37. 37.
    M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford Univ. Press, Oxford, 1986).Google Scholar
  38. 38.
    N. Shimamoto, K. Ijiro, K. Sasaki, and Y. Osada, Adv. Mater. 24, 5243 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.RIKENAdvanced Science InstituteWako, SaitamaJapan

Personalised recommendations