Skip to main content
Log in

How does poly(N-isopropylacrylamide) trigger phase separation in aqueous alcohol?

  • Published:
Polymer Science, Series C Aims and scope Submit manuscript

Abstract

Short chain alcohols, such as methanol and ethanol, are fairly well miscible in water over full mixing ratios. Moreover, when poly(N-isopropylacrylamide) is added in the same mixtures, the solution phase separates at low alcohol concentrations. From the fundamental understanding of phase separation within the mean-field picture, we can expect interaction parameter χ between water and alcohol to be significantly larger than unity. On the contrary, however, χ remains invariant and close to zero over full mixing ratios of aqueous alcohol mixtures. Here, we show how the preferential binding of poly(N-isopropylacrylamide) with alcohols facilitates local phase separation without altering bulk solution χ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. H. G. Schild, M. Muthukumar, and D. A. Tirrell, Macromolecules 24, 948 (1991).

    Article  CAS  Google Scholar 

  2. F. M. Winnik, H. Ringsdorf, and J. Venzmer, Macromolecules 23, 2415 (1990).

    Article  CAS  Google Scholar 

  3. G. Zhang and C. Wu, Phys. Rev. Lett. 86, 822 (2001).

    Article  CAS  Google Scholar 

  4. J. Walter, J. Sehrt, J. Vrabec, and H. J. Hasse, J. Phys. Chem. B 116, 5251 (2012).

    Article  CAS  Google Scholar 

  5. H. Kojima, F. Tanaka, C. Scherzinger, and W. Richtering, J. Polym. Sci., Part B: Polym. Phys. 51, 1100 (2013).

    Article  CAS  Google Scholar 

  6. K. Kyriakos, M. Philipp, C.-H. Lin, M. Dyakonova, N. Vishnevetskaya, I. Grillo, A. Zaccone, A. Miasnikova, A. Laschewsky, P. Mller-Buschbaum, and C. M. Papadakis, Macromol. Rapid Commun. 37, 420 (2016).

    Article  CAS  Google Scholar 

  7. F. Tanaka, T. Koga, and F. M. Winnik, Phys. Rev. Lett. 101, 028302 (2008).

    Article  Google Scholar 

  8. D. Mukherji, C. M. Marques, and K. Kremer, Nat. Commun. 5, 4882 (2014).

    Article  Google Scholar 

  9. D. Mukherji, C. M. Marques, T. Stuehn, and K. Kremer, J. Chem. Phys. 142, 114903 (2015).

    Article  Google Scholar 

  10. J. Dudowicz, K. F. Freed, and J. F. Douglas, J. Chem. Phys. 143, 131101 (2015).

    Article  Google Scholar 

  11. Y. A. Budkov, A. L. Kolesnikov, N. N. Kalikin, and M. G. Kiselev, Europhys. Lett. 114, 46004 (2016).

    Article  Google Scholar 

  12. D. Mukherji and K. Kremer, Macromolecules 46, 9158 (2013).

    Article  CAS  Google Scholar 

  13. D. Mukherji, M. Wagner, M. D. Watson, S. Winzen, T. E. de Oliveira, C. M. Marques, and K. Kremer, Soft Matter 12, 7995 (2016).

    Article  CAS  Google Scholar 

  14. T. E. de Oliveira, P. A. Netz, D. Mukherji, and K. Kremer, Soft Matter 11, 8599 (2015).

    Article  CAS  Google Scholar 

  15. I. M. Lifshitz, A. Yu Grosberg, and A. R. Khokhlov, Sov. Phys. JEPT 44, 855 (1976).

    Google Scholar 

  16. Y. A. Budkov, A. L. Kolesnikov, N. N. Kalikin, and M. G. Kiselev, J. Chem. Phys. 141, 014902 (2014).

    Article  Google Scholar 

  17. Y. A. Budkov, I. I. Vyalov, A. L. Kolesnikov, N. Georgi, G. N. Chuev, and M. G. Kiselev, J. Chem. Phys. 141, 204904 (2014).

    Article  Google Scholar 

  18. K. Kremer and G. S. Grest, J. Chem. Phys. 92, 5057 (1990).

    Article  CAS  Google Scholar 

  19. P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell Univ. Press, London, 1979).

    Google Scholar 

  20. J. Des Cloizeaux and G. Jannink, Polymers in Solution: Their Modelling and Structure (Clarendon Press, Oxford, 1990).

    Google Scholar 

  21. J. D. Halverson, T. Brandes, O. Lenz, A. Arnold, S. Bevc, V. Starchenko, K. Kremer, T. Stuehn, and D. Reith, Comput. Phys. Commun. 184, 1129 (2013).

    Article  CAS  Google Scholar 

  22. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14, 33 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashish Mukherji.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherji, D., Kremer, K. How does poly(N-isopropylacrylamide) trigger phase separation in aqueous alcohol?. Polym. Sci. Ser. C 59, 119–124 (2017). https://doi.org/10.1134/S181123821701009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S181123821701009X

Navigation