Skip to main content

Mathematical simulation of lysine dendrimers: Temperature dependences

Abstract

The mathematical simulation of second- and fourth-generation lysine dendrimers is performed via the molecular-dynamics method. Temperature dependences of primary structural characteristics are obtained. It is shown that the sizes and atomic distributions of these dendrimers are weakly temperature-dependent. Together with the structural properties, the local mobility of CH2 groups in the dendrimers is investigated via the molecular-dynamics method and NMR spectroscopy. It is shown that the orientational mobility of internal groups of the lysine dendrimers is lower than that of terminal groups, in agreement with the data available for flexible-chain dendrimers. Changes in correlation times with temperature are well described by the Arrhenius dependence. At the same time, the orientational mobility of internal groups in the lysine dendrimers depends on the generation number. This behavior is different from that of flexible-chain dendrimers, in which the mobility of internal groups is the same for dendrimers of different generations.

This is a preview of subscription content, access via your institution.

References

  1. E. Buhleier, W. Wehner, and F. Vogtle, Synthesis, 2(2), 155 (1978).

    Article  Google Scholar 

  2. G. R. Newkome, Z.-Q. Yao, G. R. Baker, and V. K. Gupta, J. Org. Chem. 50, 2003 (1985).

    Article  CAS  Google Scholar 

  3. D. A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, and P. Smith, Polym. J. Jpn. 17, 117 (1985).

    Article  CAS  Google Scholar 

  4. C. Hawker and J. M. J. Frechet, J. Chem. Soc., Chem. Commun., 1010 (1990).

    Google Scholar 

  5. R. G. Denkewalter, J. Kolc, and W. J. Lukasavage, US Patent 4289872 (1981).

  6. R. G. Denkewalter, J. Kolc, and W. J. Lukasavage, US Patent 4410688 (1983).

  7. L. Crespo, G. Sanclimens, M. Pons, E. Giralt, M. Royo, and F. Albericio, Chem. Rev. 105, 1663 (2005).

    Article  CAS  Google Scholar 

  8. J. P. Tam, Y.-A. Lu, and J.-L. Yang, Eur. J. Biochem. 269, 923 (2002).

    Article  CAS  Google Scholar 

  9. B. Klajnert, J. Janiszewska, Z. Urbanczyk-Lipkowska, M. Bryszewska, D. Shcharbin, and M. Labieniec, Int. J. Pharm. 309, 208 (2006).

    Article  CAS  Google Scholar 

  10. I. M. Neelov, A. Janaszewska, B. Klajnert, M. Bryszewska, Z. Makova, D. Hicks, H. Pearson, G. P. Vlasov, M. Yu. Ilyash, D. S. Vasilev, N. M. Dubrovskaya, N. L. Tumanova, I. A. Zhuravin, A. J. Turner, and N. N. Nalivaeva, Curr. Med. Chem. 20, 134 (2013).

    CAS  Google Scholar 

  11. Q. Yu, Y. Mu, L. Nordenskiold, and J. P. Tam, in Understanding Biology Using Peptides, Ed. by E. Blondelle (Amer. Peptide Soc., 2005).

  12. S. Javor, E. Delort, T. Darbre, and J.-L. Reymond, J. Am. Chem. Soc. 129, 9 (2007).

    Article  Google Scholar 

  13. S. Javor and J.-L. Reymond, J. Org. Chem. 74, 3665 (2009).

    Article  CAS  Google Scholar 

  14. B. P. Roberts, M. J. Scanlon, G. Y. Krippner, and D. K. Chalmers, Macromolecules 42, 2775 (2009).

    Article  CAS  Google Scholar 

  15. B. P. Roberts, G. Y. Krippner, M. J. Scanlon, and D. K. Chalmers, Macromolecules 42, 2784 (2009).

    Article  CAS  Google Scholar 

  16. G. P. Vlasov, V. I. Korol’kov, G. A. Pankova, I. I. Tarasenko, A. N. Baranov, P. B. Glazkov, A. V. Kiselev, O. V. Ostapenko, E. A. Lesina, and V. S. Baranov, Bioorg. Khim. 30, 15 (2004).

    CAS  Google Scholar 

  17. J. M. Frechet and D. A. Tomalia, Dendrimers and Other Dendritic Polymers (Wiley, New York, 2002); S. M. Grayson and J. M. Frechet, J. Chem. Rev. 101, 3819 (2001).

    Google Scholar 

  18. HyperChem(TM) Professional 7.5 (Hypercube, Gainesville, FL).

  19. B. Hess, C. Kutzner, D. Spoel, and E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008).

    Article  CAS  Google Scholar 

  20. D. A. Markelov, V. V. Matveev, P. Ingman, M. N. Nikolaeva, E. Lahderanta, V. A. Shevelev, and N. I. Boiko, J. Phys. Chem. B 114, 4159 (2010).

    Article  CAS  Google Scholar 

  21. R. Novoa-Carballal, E. Sawen, E. Fernandez-Megia, J. Correa, R. Riguera, and G. Widmalm, Phys. Chem. Chem. Phys. 12, 6587 (2010).

    Article  CAS  Google Scholar 

  22. D. A. Markelov, V. V. Matveev, P. Ingman, E. Lahderanta, and N. I. Boiko, J. Chem. Phys. 135, 124901 (2011).

    Article  Google Scholar 

  23. D. A. Markelov, M. A. Mazo, N. K. Balabaev, and Yu. Ya. Gotlib, Polymer Sci. Ser. A 55, No. 1 (2013).

    Google Scholar 

  24. Yu. Ya. Gotlib and D. A. Markelov, Polymer Sci., Ser. A 49, 1137 (2007).

    Article  Google Scholar 

  25. D. A. Markelov, Yu. Ya. Gotlib, A. A. Darinskii, A. V. Lyulin, and S. V. Lyulin, Polymer Sci., Ser. A 51, 331 (2009).

    Article  Google Scholar 

  26. D. A. Markelov, S. V. Lyulin, Yu. Ya. Gotlib, A. V. Lyulin, V. V. Matveev, E. Lahderanta, and A. A. Darinskii, J. Chem. Phys. 130, 044907 (2009).

    Article  Google Scholar 

  27. Yu. Ya. Gotlib and A. I. Neelov, Polymer Sci., Ser. A 45, 993 (2003).

    Google Scholar 

  28. M. A. Mazo, M. Yu. Shamaev, N. K. Balabaev, A. A. Darinskii, and I. M. Neelov, Phys. Chem. Chem. Phys. 6, 1285 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Neelov.

Additional information

Original Russian Text © I.M. Neelov, D.A. Markelov, S.G. Falkovich, M.Yu. Ilyash, B.M. Okrugin, A.A. Darinskii, 2013, published in Vysokomolekulyarnye Soedineniya, Ser. C, 2013, Vol. 55, No. 7, pp. 963–970.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Neelov, I.M., Markelov, D.A., Falkovich, S.G. et al. Mathematical simulation of lysine dendrimers: Temperature dependences. Polym. Sci. Ser. C 55, 154–161 (2013). https://doi.org/10.1134/S1811238213050032

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238213050032

Keywords

  • Polymer Science Series
  • Lysine Residue
  • Terminal Group
  • Molecular Dynamic Method
  • Internal Group