Abstract
The mathematical simulation of second- and fourth-generation lysine dendrimers is performed via the molecular-dynamics method. Temperature dependences of primary structural characteristics are obtained. It is shown that the sizes and atomic distributions of these dendrimers are weakly temperature-dependent. Together with the structural properties, the local mobility of CH2 groups in the dendrimers is investigated via the molecular-dynamics method and NMR spectroscopy. It is shown that the orientational mobility of internal groups of the lysine dendrimers is lower than that of terminal groups, in agreement with the data available for flexible-chain dendrimers. Changes in correlation times with temperature are well described by the Arrhenius dependence. At the same time, the orientational mobility of internal groups in the lysine dendrimers depends on the generation number. This behavior is different from that of flexible-chain dendrimers, in which the mobility of internal groups is the same for dendrimers of different generations.
This is a preview of subscription content, access via your institution.
References
E. Buhleier, W. Wehner, and F. Vogtle, Synthesis, 2(2), 155 (1978).
G. R. Newkome, Z.-Q. Yao, G. R. Baker, and V. K. Gupta, J. Org. Chem. 50, 2003 (1985).
D. A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, and P. Smith, Polym. J. Jpn. 17, 117 (1985).
C. Hawker and J. M. J. Frechet, J. Chem. Soc., Chem. Commun., 1010 (1990).
R. G. Denkewalter, J. Kolc, and W. J. Lukasavage, US Patent 4289872 (1981).
R. G. Denkewalter, J. Kolc, and W. J. Lukasavage, US Patent 4410688 (1983).
L. Crespo, G. Sanclimens, M. Pons, E. Giralt, M. Royo, and F. Albericio, Chem. Rev. 105, 1663 (2005).
J. P. Tam, Y.-A. Lu, and J.-L. Yang, Eur. J. Biochem. 269, 923 (2002).
B. Klajnert, J. Janiszewska, Z. Urbanczyk-Lipkowska, M. Bryszewska, D. Shcharbin, and M. Labieniec, Int. J. Pharm. 309, 208 (2006).
I. M. Neelov, A. Janaszewska, B. Klajnert, M. Bryszewska, Z. Makova, D. Hicks, H. Pearson, G. P. Vlasov, M. Yu. Ilyash, D. S. Vasilev, N. M. Dubrovskaya, N. L. Tumanova, I. A. Zhuravin, A. J. Turner, and N. N. Nalivaeva, Curr. Med. Chem. 20, 134 (2013).
Q. Yu, Y. Mu, L. Nordenskiold, and J. P. Tam, in Understanding Biology Using Peptides, Ed. by E. Blondelle (Amer. Peptide Soc., 2005).
S. Javor, E. Delort, T. Darbre, and J.-L. Reymond, J. Am. Chem. Soc. 129, 9 (2007).
S. Javor and J.-L. Reymond, J. Org. Chem. 74, 3665 (2009).
B. P. Roberts, M. J. Scanlon, G. Y. Krippner, and D. K. Chalmers, Macromolecules 42, 2775 (2009).
B. P. Roberts, G. Y. Krippner, M. J. Scanlon, and D. K. Chalmers, Macromolecules 42, 2784 (2009).
G. P. Vlasov, V. I. Korol’kov, G. A. Pankova, I. I. Tarasenko, A. N. Baranov, P. B. Glazkov, A. V. Kiselev, O. V. Ostapenko, E. A. Lesina, and V. S. Baranov, Bioorg. Khim. 30, 15 (2004).
J. M. Frechet and D. A. Tomalia, Dendrimers and Other Dendritic Polymers (Wiley, New York, 2002); S. M. Grayson and J. M. Frechet, J. Chem. Rev. 101, 3819 (2001).
HyperChem(TM) Professional 7.5 (Hypercube, Gainesville, FL).
B. Hess, C. Kutzner, D. Spoel, and E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008).
D. A. Markelov, V. V. Matveev, P. Ingman, M. N. Nikolaeva, E. Lahderanta, V. A. Shevelev, and N. I. Boiko, J. Phys. Chem. B 114, 4159 (2010).
R. Novoa-Carballal, E. Sawen, E. Fernandez-Megia, J. Correa, R. Riguera, and G. Widmalm, Phys. Chem. Chem. Phys. 12, 6587 (2010).
D. A. Markelov, V. V. Matveev, P. Ingman, E. Lahderanta, and N. I. Boiko, J. Chem. Phys. 135, 124901 (2011).
D. A. Markelov, M. A. Mazo, N. K. Balabaev, and Yu. Ya. Gotlib, Polymer Sci. Ser. A 55, No. 1 (2013).
Yu. Ya. Gotlib and D. A. Markelov, Polymer Sci., Ser. A 49, 1137 (2007).
D. A. Markelov, Yu. Ya. Gotlib, A. A. Darinskii, A. V. Lyulin, and S. V. Lyulin, Polymer Sci., Ser. A 51, 331 (2009).
D. A. Markelov, S. V. Lyulin, Yu. Ya. Gotlib, A. V. Lyulin, V. V. Matveev, E. Lahderanta, and A. A. Darinskii, J. Chem. Phys. 130, 044907 (2009).
Yu. Ya. Gotlib and A. I. Neelov, Polymer Sci., Ser. A 45, 993 (2003).
M. A. Mazo, M. Yu. Shamaev, N. K. Balabaev, A. A. Darinskii, and I. M. Neelov, Phys. Chem. Chem. Phys. 6, 1285 (2004).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © I.M. Neelov, D.A. Markelov, S.G. Falkovich, M.Yu. Ilyash, B.M. Okrugin, A.A. Darinskii, 2013, published in Vysokomolekulyarnye Soedineniya, Ser. C, 2013, Vol. 55, No. 7, pp. 963–970.
Rights and permissions
About this article
Cite this article
Neelov, I.M., Markelov, D.A., Falkovich, S.G. et al. Mathematical simulation of lysine dendrimers: Temperature dependences. Polym. Sci. Ser. C 55, 154–161 (2013). https://doi.org/10.1134/S1811238213050032
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1811238213050032
Keywords
- Polymer Science Series
- Lysine Residue
- Terminal Group
- Molecular Dynamic Method
- Internal Group