Skip to main content

Synthesis of poly(N,N-dimethylaminoethyl methacrylate) nanogels in reverse micelles for delivery of plasmid DNA and small interfering RNAs into living cells


Hydrogel nanoparticles of poly(N,N-dimethylaminoethyl methacrylate) with hydrodynamic radii of 40–50 nm are synthesized via the copolymerization of a water-soluble monomer and N,N′-methylenebis(acrylamide) in a solution of Brij-97 reverse micelles in cyclohexane. All amino groups of nanoparticles are protonated in a weakly acidic solution; however, almost one-third of them remain inaccessible to a flexible polystyrenesulfonate polyanion, while almost two-thirds of them remain inaccessible to rigid double-helical DNA. Complexes of nanogels with plasmid DNA carrying the firefly luciferase gene transfect eukaryotic cells in a cultural medium, and the products of interaction of nanogels with small interfering RNAs suppress expression of the marker enzyme. In both systems, the replacement of linear polyamine with nanogel significantly increases the efficiency of delivery. The activity of nanogels in transfection experiments depends in an extremum pattern on the crosslink degree and achieves a maximum value at a crosslinking-agent concentration of 5 mol %. The results of this study suggest that the developed procedure offers promise for the synthesis of cationic nanogels as vectors for delivery of genetic material into living cells.

This is a preview of subscription content, access via your institution.


  1. 1.

    M. A. Mintzer and E. E. Simanek, Chem. Rev. 109, 259 (2009).

    Article  CAS  Google Scholar 

  2. 2.

    A. V. Kabanov and V. A. Kabanov, Bioconjug. Chem. 6, 7 (1995).

    Article  CAS  Google Scholar 

  3. 3.

    C. M. Roth and S. Sundaram, Annu. Rev. Biomed. Eng. 6, 397 (2004).

    Article  CAS  Google Scholar 

  4. 4.

    Y. Liu, J. Sun, P. Zhang, and Z. He, Curr. Med. Chem. 18, 2638 (2011).

    Article  CAS  Google Scholar 

  5. 5.

    B. Barteau, R. Chevre, E. Letrou-Bonneval, R. Labas, O. Lambert, and B. Pitard, Curr. Genet. Ther. 8, 313 (2008).

    Article  CAS  Google Scholar 

  6. 6.

    Y. W. Cho, J. D. Kim, and K. Park, J. Pharm. Pharmacol. 55, 721 (2003).

    Article  CAS  Google Scholar 

  7. 7.

    N. D. Sonawane, F. C. Jr. Szoka, and A. S. Verkman, J. Biol. Chem. 278, 44826 (2003).

    Article  CAS  Google Scholar 

  8. 8.

    D. Putnam, A. N. Zelikin, V. A. Izumrudov, and R. Langer, Biomaterials 24, 4425 (2003).

    Article  CAS  Google Scholar 

  9. 9.

    K. Kono, H. Akiyama, T. Takahashi, T. Takagishi, and A. Harada, Bioconjug. Chem. 16, 208 (2005).

    Article  CAS  Google Scholar 

  10. 10.

    S. V. Vinogradov, T. K. Bronich, and A. V. Kabanov, Adv. Drug Delivery Rev. 54, 135 (2002).

    Article  CAS  Google Scholar 

  11. 11.

    M. Gou, K. Men, J. Zhang, Y. Li, J. Song, S. Luo, H. Shi, Y. Wen, G. Guo, M. Huang, X. Zhao, Z. Qian, and Y. Wei, ACS Nano 4, 5573 (2010).

    Article  CAS  Google Scholar 

  12. 12.

    K. Raemdonck, B. Naeye, A. Hogset, J. Demeester, and S. C. De Smedt, J. Controlled Release 145, 281 (2010).

    Article  CAS  Google Scholar 

  13. 13.

    D. M. Xu, S. D. Yao, Y. B. Liu, K. L. Sheng, J. Hong, P. J. Gong, and L. Dong, Int. J. Pharm. 338, 291 (2007).

    Article  CAS  Google Scholar 

  14. 14.

    E. G. Abakumova, A. V. Levashov, I. V. Berezin, and K. Martinek, Dokl. Akad. Nauk SSSR 283, 136 (1985).

    CAS  Google Scholar 

  15. 15.

    V. Bitko and S. Barik, BMC Microbiol. 1, 34 (2001).

    Article  CAS  Google Scholar 

  16. 16.

    E. A. Litmanovich, S. O. Zakharchenko, G. V. Stoichev, and A. B. Zezin, Polymer Science, Ser. A 51, 616 (2009) [Vysokomol. Soedin., Ser. A 51, 940 (2009)].

    Article  Google Scholar 

  17. 17.

    A. B. Zezin and V. A. Kabanov, Usp. Khim. 51, 1447 (1982).

    Article  CAS  Google Scholar 

  18. 18.

    V. A. Izumrudov, A. B. Zezin, and V. A. Kabanov, Usp. Khim. 60, 1570 (1991).

    Article  Google Scholar 

  19. 19.

    M. V. Zhiryakova and V. A. Izumrudov, Polymer Science, Ser. A 49, 1290 (2007) [Vysokomol. Soedin., Ser. A 49, 2092 (2007)].

    Article  Google Scholar 

  20. 20.

    J. R. De Wet, K. V. Wood, M. DeLuca, D. R. Helinski, and S. Subramani, Mol. Cell Biol. 7, 725 (1987).

    Google Scholar 

  21. 21.

    K. Martinek, A. V. Levashov, Y. L. Khmelnitsky, N. L. Klyachko, and I. V. Berezin, Science (Washington, D. C.) 218, 889 (1982).

    Article  CAS  Google Scholar 

  22. 22.

    J. Eastoe, M. J. Hollamby, and L. Hudson, Adv. Colloid Interface Sci. 128–130, 5 (2006).

    Article  Google Scholar 

  23. 23.

    M. A. López-Quintela, C. Tojob, M. C. Blancoa, R. L. Garcia, and J. R. Leisa, Curr. Opin. Colloid Interface Sci. 9, 264 (2004).

    Article  Google Scholar 

  24. 24.

    R. Z. Greenley, in Polymer Handbook, Ed. by J. Brandrup, E. H. Immergut, and E. Grulke (Wiley, New York, 1999).

    Google Scholar 

  25. 25.

    C. B. Post, Biopolymers 22, 1087 (1983).

    Article  CAS  Google Scholar 

  26. 26.

    P. J. Hagerman, Annu. Rev. Biophys. Biophys. Chem. 17, 265 (1988).

    Article  CAS  Google Scholar 

  27. 27.

    O. V. Davydova, A. N. Zelikin, S. I. Kargov, and V. A. Izumrudov, Macromol. Chem. Phys. 202, 1368 (2001).

    Article  CAS  Google Scholar 

  28. 28.

    G. M. Pavlov, I. I. Zaitseva, A. S. Gubarev, I. I. Gavrilova, and E. F. Panarin, Zh. Prikl. Khim. (S.-Peterburg) 79, 1506 (2006).

    Google Scholar 

  29. 29.

    V. A. Izumrudov, M. V. Zhiryakova, and S. Kudaibergenov, Biopolymers (Nucleic Acid Sci.) 52, 94 (2000).

    Article  Google Scholar 

  30. 30.

    A. C. Hunter, Adv. Drug Delivery Rev. 58, 1523 (2006).

    Article  CAS  Google Scholar 

  31. 31.

    S. Hong, P. R. Leroueil, E. K. Janus, J. L. Peters, M.M. Kober, M. T. Islam, B. G. Orr, J. R. Baker, Jr., and M. M. Banaszak Holl, Bioconjug. Chem. 17, 728 (2006).

    Article  CAS  Google Scholar 

  32. 32.

    A. Fire, S. Xu, M. K. Mongomery, S. A. Kostas, S. E. Driver, and C. C. Mello, Nature (London) 391, 806 (1998).

    Google Scholar 

  33. 33.

    R. Shegokar, L. Al Shaal, and P. R. Mishra, Pharmazie 66, 313 (2011).

    CAS  Google Scholar 

  34. 34.

    A. Iijima, R. Hachisu, H. Kobayashi, K. Hashimoto, D. Asano, and H. Kikuchi, Biol. Pharm. Bull. 30, 1844 (2007).

    Article  CAS  Google Scholar 

  35. 35.

    A. V. Kabanov and S. V. Vinogradov, Angew. Chem., Int. Ed. Engl. 48, 5418 (2009).

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to E. D. Maksimova.

Additional information

Original Russian Text © E.D. Maksimova, E.B. Faizuloev, V.A. Izumrudov, E.A. Litmanovich, N.S. Melik-Nubarov, 2012, published in Vysokomolekulyarnye Soedineniya, Ser. C, 2012, Vol. 54, No. 7, pp. 1036–1047.

This work was supported by the Foundation of Ministry of Education and Science of the Russian Federation, State Contract 16.512.11.2059.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maksimova, E.D., Faizuloev, E.B., Izumrudov, V.A. et al. Synthesis of poly(N,N-dimethylaminoethyl methacrylate) nanogels in reverse micelles for delivery of plasmid DNA and small interfering RNAs into living cells. Polym. Sci. Ser. C 54, 69–79 (2012).

Download citation


  • Polymer Science Series
  • Crosslinking Agent
  • Reverse Micelle
  • Brij
  • Molecular Mass Distribution