Skip to main content

Compaction of DNA in solutions of highly charged proteins carrying the same charge as DNA

Abstract

The theory of DNA compaction in solutions of highly charged proteins carrying charge of the same sign as DNA is developed. It is shown that the introduction of a negatively charged protein may induce the collapse of DNA that occurs as a first-order phase transition. The concentration of protein in the vicinity of DNA practically coincides with the concentration of protein in solution on the whole, and the introduction of protein into a solution is equivalent to the effective worsening of solvent quality. The higher the absolute value of the protein charge, the more pronounced this worsening. The higher the charge of the protein, the smaller its content that causes the compaction of DNA. The properties of the transition depend on the effective charge of DNA and on the concentration of a low-molecular-mass salt. An increase in the concentration of the salt may weaken the action of protein as a compaction agent and cause the reverse transition of a DNA macromolecule to the coiled state.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    L. Lerman, Proc. Natl. Acad. Sci. U. S. A. 68, 1886 (1971).

    Article  CAS  Google Scholar 

  2. 2.

    L. Lerman, in Physico-Chemical Properties of the Nucleic Acids, Ed. by J. Duchesne (Academic, London, 1973), p. 59.

    Google Scholar 

  3. 3.

    U. K. Laemmli, J. K. Paulson, and V. Hitchins, J. Supramol. Struct. 2, 276 (1974).

    Article  CAS  Google Scholar 

  4. 4.

    N. A. Chebotareva, B. I. Kurganov, and N. B. Livanova, Biokhimiya (Moscow) 69, 1522 (2004).

    Google Scholar 

  5. 5.

    D. Miyoshi and N. Sugimoto, Biochimie 90, 1040 (2008).

    Article  CAS  Google Scholar 

  6. 6.

    K. Richter, M. Nessling, and P. Lichter, Biochim. Biophys. Acta 1783, 2100 (2008).

    Article  CAS  Google Scholar 

  7. 7.

    V. A. Bloomfield, Curr. Opin. Struct. Biol. 6, 334 (1996).

    Article  CAS  Google Scholar 

  8. 8.

    N. M. Akimenko, E. B. Dijakowa, Yu. M. Evdokimov, et al., FEBS Lett. 38, 61 (1973).

    Article  CAS  Google Scholar 

  9. 9.

    U. K. Laemmli, Proc. Natl. Acad. Sci. U. S. A. 72, 4288 (1975).

    Article  CAS  Google Scholar 

  10. 10.

    V. V. Vasilevskaya, A. R. Khokhlov, Y. Matsuzawa, and K. Yoshikawa, J. Chem. Phys. 102, 6595 (1995).

    Article  CAS  Google Scholar 

  11. 11.

    A. A. Zinchenko and K. Yoshikawa, Biophys. J. 88, 4118 (2005).

    Article  CAS  Google Scholar 

  12. 12.

    J. Kapuscinski and Z. Darzynkiewicz, Proc. Natl. Acad. Sci. U. S. A. 81, 7368 (1984).

    Article  CAS  Google Scholar 

  13. 13.

    L. S. Gosule and J. A. Schellman, Nature (London) 259, 333 (1976).

    Article  CAS  Google Scholar 

  14. 14.

    L. S. Gosule and J. A. Schellman, J. Mol. Biol. 121, 311 (1978).

    Article  CAS  Google Scholar 

  15. 15.

    K. Yoshikawa, M. Takahashi, V. V. Vasilevskaya, and A. R. Khokhlov, Phys. Rev. Lett. 76, 3029 (1996).

    Article  CAS  Google Scholar 

  16. 16.

    D. K. Chattoraj, L. S. Gosule, and J. A. Schellman, J. Mol. Biol. 121, 327 (1978).

    Article  CAS  Google Scholar 

  17. 17.

    R. W. Wilson and V. A. Bloomfield, Biochemistry 18, 2192 (1979).

    Article  CAS  Google Scholar 

  18. 18.

    M. Takahashi, K. Yoshikawa, V. V. Vasilevskaya, and A. R. Khokhlov, J. Phys. Chem. 101, 9396 (1997).

    Article  CAS  Google Scholar 

  19. 19.

    J. Widom and R. L. Baldwin, J. Mol. Biol. 144, 431 (1980).

    Article  CAS  Google Scholar 

  20. 20.

    V. V. Vasilevskaya, A. R. Khokhlov, S. Kidoaki, and K. Yoshikawa, Biopolymers 41, 51 (1997).

    Article  CAS  Google Scholar 

  21. 21.

    V. A. Bloomfield, Biopolymers 31, 1471 (1991).

    Article  CAS  Google Scholar 

  22. 22.

    S.-M. Cheng and S. C. Mohr, Biopolymers 14, 663 (1975).

    Article  CAS  Google Scholar 

  23. 23.

    C. B. Post and B. C. Zimm, Biopolymers 21, 2139 (1982).

    Article  CAS  Google Scholar 

  24. 24.

    R. Huey and S. C. Mohr, Biopolymers 20, 2533 (1981).

    Article  CAS  Google Scholar 

  25. 25.

    S. M. Melnikov, V. G. Sergeev, and K. Yoshikawa, J. Am. Chem. Soc. 117, 2401 (1995).

    Article  CAS  Google Scholar 

  26. 26.

    O. E. Philippova, T. Akitaya, I. R. Mullagaliev, et al., Macromolecules 38, 9359 (2005).

    Article  CAS  Google Scholar 

  27. 27.

    J. Naghizadah and A. R. Massih, Phys. Rev. Lett. 40, 1299 (1978).

    Article  Google Scholar 

  28. 28.

    C. B. Post and B. H. Zimm, Biopolymers 18, 1487 (1979).

    Article  CAS  Google Scholar 

  29. 29.

    C. B. Post and B. H. Zimm, Biopolymers 21, 2123 (1982).

    Article  CAS  Google Scholar 

  30. 30.

    A. Yu. Grosberg, I. Ya. Erukhimovich, and E. I. Shakhnovich, Biofizika 24, 415 (1981).

    Google Scholar 

  31. 31.

    A. Yu. Grosberg, I. Ya. Erukhimovich, and E. I. Shakhnovich, Biopolymers 21, 2413 (1982).

    Article  CAS  Google Scholar 

  32. 32.

    H. L. Frisch and S. J. Fesciyan, J. Polym. Sci., Part C: Polym. Lett. 17, 309 (1979).

    CAS  Google Scholar 

  33. 33.

    K. Minagawa, Y. Matsuzawa, K. Yoshikawa, A. R. Khokhlov, and M. Doi, Biopolymers 34, 555 (1994).

    Article  CAS  Google Scholar 

  34. 34.

    K. Yoshikawa and Y. Matsuzawa, Physica D (Amsterdam) 84, 220 (1995).

    Article  CAS  Google Scholar 

  35. 35.

    T. Akitaya, A. Seno, T. Nakai, et al., Biomacromolecules 8, 273 (2007).

    Article  CAS  Google Scholar 

  36. 36.

    T. Iwataki, S. Kidoaki, T. Sakaue, et al., J. Chem. Phys. 120, 4004 (2004).

    Article  CAS  Google Scholar 

  37. 37.

    A. A. Zinchenko, D. M. Baigl, N. Chen, et al., Biomacromolecules 9, 1981 (2008).

    Article  CAS  Google Scholar 

  38. 38.

    A. Gonzalez-Perez, J. Carlstedt, R. S. Dias, and B. Lindman, Colloids Surf. B 76, 20 (2010).

    Article  CAS  Google Scholar 

  39. 39.

    S. Kidoaki and K. Yoshikawa, Biophys. J. 71, 932 (1996).

    Article  CAS  Google Scholar 

  40. 40.

    S. Matsumato, K. Morikawa, and M. Yanagida, J. Mol. Biol. 152, 501 (1981).

    Article  Google Scholar 

  41. 41.

    C. Bustamante, Annu. Rev. Biophys. Biophys. Chem. 20, 415 (1991).

    Article  CAS  Google Scholar 

  42. 42.

    M. K. Krotova, V. V. Vasilevskaya, N. Makita, et al., Phys. Rev. Lett. 105, 128302 (2010).

    Article  CAS  Google Scholar 

  43. 43.

    M. Stevens and K. Kremer, Macromolecules 26, 4717 (1993).

    Article  CAS  Google Scholar 

  44. 44.

    V. V. Vasilevskaya, A. R. Khokhlov, and K. Yoshikawa, Macromol. Theory Simul. 9, 600 (2000).

    Article  CAS  Google Scholar 

  45. 45.

    A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (Nauka, Moscow, 1989; AIP, Ithaca, 1994).

    Google Scholar 

  46. 46.

    N. P. Shusharina, I. A. Nyrkova, and A. R. Khokhlov, Macromolecules 29, 3167 (1996).

    Article  CAS  Google Scholar 

  47. 47.

    L. D. Landau and E. M. Lifshitz, Statistical Physics, Parts 1 and 2 (Nauka, Moscow, 1976; Pergamon, Oxford, 1980).

    Google Scholar 

  48. 48.

    Ch. Tanford, Physical Chemistry of Polymers (Wiley, New York, 1961; Khimiya, Moscow, 1965).

    Google Scholar 

  49. 49.

    V. V. Vasilevskaya and A. R. Khokhlov, Vysokomol. Soedin., Ser. A 28, 316 (1986).

    CAS  Google Scholar 

  50. 50.

    K. Yoshikawa, S. Hirota, N. Makita, and Y. Yoshikawa, J. Phys. Chem. Lett. 1, 1763 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. V. Vasilevskaya.

Additional information

Original Russian Text © M.K. Krotova, V.V. Vasilevskaya, A.R. Khokhlov, 2012, published in Vysokomolekulyarnye Soedineniya, Ser. C, 2012, Vol. 54, No. 7, pp. 985–993.

This work was supported by the Russian Foundation for Basic Research (project no. 11-03-00320-a), by the Ministry of Education and Science of the Russian Federation and the Division of Chemistry and Materials Sciences, Russian Academy of Sciences, within basic-research program Creation and Study of Macromolecules and Macromolecular Structures of New Generations.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Krotova, M.K., Vasilevskaya, V.V. & Khokhlov, A.R. Compaction of DNA in solutions of highly charged proteins carrying the same charge as DNA. Polym. Sci. Ser. C 54, 21–29 (2012). https://doi.org/10.1134/S1811238212020014

Download citation

Keywords

  • Compaction
  • Macromolecule
  • Polymer Science Series
  • Order Phase Transition
  • Ionization Degree