Polymer Science Series C

, 53:14 | Cite as

The use of spin traps for the kinetic investigation of elementary events of pseudoliving radical reversible addition-fragmentation chain-transfer polymerization

  • V. B. Golubev
  • A. N. Filippov
  • E. V. ChernikovaEmail author
  • M. L. Coote
  • C. Y. Lin
  • G. Gryn’ova


The spin-trapping technique is used for the first time to study the kinetics and mechanism of addition and fragmentation elementary events in reversible addition-fragmentation chain-transfer pseudoliving radical polymerization. As shown by the example of the spin-trap-reversible addition-fragmentation chaintransfer agent model system, the constants of addition (substitution) of the model tert-butyl radical to polymeric reversible addition-fragmentation chain-transfer agents (poly(styrene dithiobenzoate), poly(n-butyl acrylate) dithiobenzoate, etc.) are one to two orders of magnitude higher than the constants of addition reactions involving low-molecular-mass reversible addition-fragmentation chain-transfer agents (tert-butyl dithiobenzoate, benzyl dithiobenzoate, di-tert-butyl trithiocarbonate, and dibenzyl trithiocarbonate). This circumstance makes it possible to significantly widen the synthetic possibilities of reversible addition-fragmentation chain-transfer polymerization. Rate constants of the fragmentation reaction for a number of intermediates are estimated, and the relationship between their structure and stability is ascertained. For the model reaction of the interaction (addition and fragmentation) of the tert-butyl radical with low-molecular-mass reversible addition-fragmentation chain-transfer agents, equilibrium constants are calculated via the methods of computational chemistry.


Tert Butyl Polymer Science Series Spin Trap Reversible Addition Fragmen Tation Chain Transfer Tert Butyl Radical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Handbook of RAFT Polymerization, Ed. by C. Barner-Kowollik (Wiley-VCH, Weinheim, 2008).Google Scholar
  2. 2.
    G. Moad, E. Rizzardo, and S. H. Thang, Polymer 49, 1079 (2008).CrossRefGoogle Scholar
  3. 3.
    S. Perrier and P. Takolpuckdee, J. Polym. Sci., Part A: Polym. Chem. 43, 5347 (2005).CrossRefGoogle Scholar
  4. 4.
    J. Chiefari, Y. K. Chong, F. Ecrole, et al., Macromolecules 31, 5559 (1998).CrossRefGoogle Scholar
  5. 5.
    C. Barner-Kowollik, M. Buback, B. Charleux, et al., J. Polym. Sci., Part A: Polym. Chem. 44, 5809 (2006).CrossRefGoogle Scholar
  6. 6.
    E. Chernikova, A. Morozov, E. Leonova, et al., Macromolecules 37, 6329 (2004).CrossRefGoogle Scholar
  7. 7.
    E. V. Chernikova, A. V. Tarasenko, E. S. Garina, and V. B. Golubev, Polymer Science, Ser. A 50, 353 (2008) [Vysokomol. Soedin., Ser. A 50, 565 (2008)].CrossRefGoogle Scholar
  8. 8.
    E. V. Chernikova, P. S. Terpugova, M. Yu. Trifilov, et al., Polymer Science, Ser. A 51, 658 (2009) [Vysokomol. Soedin., Ser. A 51, 983 (2009)].CrossRefGoogle Scholar
  9. 9.
    E. V. Chernikova, P. S. Terpugova, E. S. Garina, and V. B. Golubev, Polymer Science, Ser. A 49, 108 (2007) [Vysokomol. Soedin., Ser. A 49, 208 (2007)].CrossRefGoogle Scholar
  10. 10.
    V. P. Shibaev, M. G. Ivanov, N. I. Boiko, and E. V. Chernikova, Dokl. Akad. Nauk 427, 1 (2009).Google Scholar
  11. 11.
    Klumperman, E. T. A. Van Dungen, J. P. A. Heuts, and M. J. Monteiro, Macromol. Rapid Commun. DOI: 10.1002/marc. 200900907 (2010).Google Scholar
  12. 12.
    Y. Kwak, A. Goto, Y. Tsujii, et al., Macromolecules 35, 3026 (2002).CrossRefGoogle Scholar
  13. 13.
    E. V. Chernikova, Doctoral Dissertation in Chemistry (Moscow, 2010).Google Scholar
  14. 14.
    S. L. Brown, D. Konkolewicz, A. Gray-Weale, et al., Aust. J. Chem. 62, 1533 (2009).CrossRefGoogle Scholar
  15. 15.
    A. Feldermann, A. Ah. Toy, T. P. Davis, et al., Polymer 46, 8448 (2005).CrossRefGoogle Scholar
  16. 16.
    A. A. Toy, P. Vana, T. P. Davis, and C. Barner-Kowollik, Macromolecules 37, 744 (2004).CrossRefGoogle Scholar
  17. 17.
    M. L. Coote and L. Radom, J. Am. Chem. Soc. 125, 1490 (2003).CrossRefGoogle Scholar
  18. 18.
    M. L. Coote, Macromolecules 37, 5023 (2004).CrossRefGoogle Scholar
  19. 19.
    A. Feldermann, M. L. Coote, M. H. Stenzel, et al., J. Am. Chem. Soc. 126, 15915 (2004).CrossRefGoogle Scholar
  20. 20.
    M. L. Coote, E. H. Krenske, and E. I. Izgorodina, Macromol. Rapid Commun. 27, 473 (2006).CrossRefGoogle Scholar
  21. 21.
    C. Barner-Kowollik, M. L. Coote, T. P. Davis, et al., J. Polym. Sci., Part A: Polym. Chem. 41, 2828 (2003).CrossRefGoogle Scholar
  22. 22.
    M. Buback, O. Janssen, R. Oswald, et al., Macromol. Symp. 248, 158 (2007).CrossRefGoogle Scholar
  23. 23.
    D. Konkolewicz, B. S. Hawkett, A. Gray-Weale, and S. Perrier, Macromolecules 41, 6400 (2008).CrossRefGoogle Scholar
  24. 24.
    J. P. A. Heuts, R. G. Gilbert, and L. Radom, Macromolecules 28, 8771 (1995).CrossRefGoogle Scholar
  25. 25.
    G. B. Smith, G. T. Russel, M. Yin, and J. P. A. Heuts, Eur. Polym. J. 41, 225 (2005).CrossRefGoogle Scholar
  26. 26.
    P. Vana, T. P. Davis, and C. Barner-Kowollik, Macromol. Theory Simul. 11, 823 (2002).CrossRefGoogle Scholar
  27. 27.
    P. Vana, J. F. Quinn, T. P. Davis, and C. Barner-Kowollik, Aust. J. Chem. 55, 425 (2002).CrossRefGoogle Scholar
  28. 28.
    C. Barner-Kowollik, J. F. Quinn, D. R. Morsley, and T. P. Davis, J. Polym. Sci., Part A: Polym. Chem. 39, 1353 (2001).CrossRefGoogle Scholar
  29. 29.
    D. G. Hawthorne, G. Moad, A. Postma, et al., Macromolecules 32, 5457 (1999).CrossRefGoogle Scholar
  30. 30.
    F. M. Calitz, M. P. Tonge, and R. D. Sanderson, Macromolecules 36, 5 (2003).CrossRefGoogle Scholar
  31. 31.
    A. Alberti, M. Benaglia, M. Laus, et al., Macromolecules 36, 736 (2003).CrossRefGoogle Scholar
  32. 32.
    F-S. Du, M-Q. Zhu, and F-M. Li, Macromolecules 35, 6739 (2002).CrossRefGoogle Scholar
  33. 33.
    V. B. Golubev, E. V. Chernikova, E. A. Leonova, and A. V. Morozov, Polymer Science, Ser. A 47, 678 (2005) [Vysokomol. Soedin., Ser. A 47, 1115 (2005)].Google Scholar
  34. 34.
    V. E. Zubarev, Method of Spin Traps (Mosk. Gos. Univ., Moscow, 1984) [in Russian].Google Scholar
  35. 35.
    V. B. Golubev, O. O. Maksimenko, and V. P. Zubov, Polymer Science, Ser. A 43, 1242 (2001) [Vysokomol. Soedin., Ser. A 43, 2112 (2001)].Google Scholar
  36. 36.
    V. B. Golubev, Polymer Science, Ser. A 36, 244 (1994) [Vysokomol. Soedin., Ser. A 36, 298 (1994)].Google Scholar
  37. 37.
    E. V. Chernikova, A. V. Tarasenko, E. S. Garina, and V. B. Golubev, Polymer Science, Ser. A 48, 1046 (2006) [Vysokomol. Soedin., Ser. A 48, 1787 (2006)].CrossRefGoogle Scholar
  38. 38.
    J. S. Stowell, J. Org. Chem. 36, 3055 (1971).CrossRefGoogle Scholar
  39. 39.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Revision B.03 (Gaussian, Pittsburg, 2003).Google Scholar
  40. 40.
    H.-J. Werner, P. J. Knowles, R. Lindh, et al., MOLPRO. Version 2006.1, A Package of ab initio Programs (
  41. 41.
    C. Y. Lin and M. L. Coote, Aust. J. Chem. 62, 1479 (2009).CrossRefGoogle Scholar
  42. 42.
    M. L. Coote, G. P. F. Wood, and L. Radom, J. Phys. Chem. A 106, 12124 (2002).CrossRefGoogle Scholar
  43. 43.
    E. I. Izgorodina and M. L. Coote, J. Phys. Chem. A 110, 2486 (2006).CrossRefGoogle Scholar
  44. 44.
    C. Y. Lin, J. L. Hodgson, M. Namazian, and M. L. Coote, J. Phys. Chem. A 113, 3690 (2009).CrossRefGoogle Scholar
  45. 45.
    C. Y. Lin, E. I. Izgorodina, and M. L. Coote, J. Phys. Chem. A 112, 1956 (2008).CrossRefGoogle Scholar
  46. 46.
    M. T. Cances, B. Mennucci, and J. Tomasi, J. Chem. Phys. 107, 3032 (1997).CrossRefGoogle Scholar
  47. 47.
    E. T. Denisov, Rate Constants of Homolytic Liquid-Phase Reactions (Nauka, Moscow, 1971) [in Russian].Google Scholar
  48. 48.
    A. P. Koposov and V. B. Golubev, Vestn. Mosk. Univ., Ser. 2: Khim. 40, 124 (1999).Google Scholar
  49. 49.
    T. Doba, T. Ichikawa, and H. Yoshida, Bull. Chem. Soc. Jpn. 50, 3158 (1977).CrossRefGoogle Scholar
  50. 50.
    M. L. Coote, J. Phys. Chem. A 109, 1230 (2005).CrossRefGoogle Scholar
  51. 51.
    E. Chernikova, V. Golubev, A. Filippov, et al., Polym. Chem. 1, 1437 (2010).CrossRefGoogle Scholar
  52. 52.
    E. I. Izgorodina and M. L. Coote, Macromol. Theory Simul. 15, 394 (2006).CrossRefGoogle Scholar
  53. 53.
    Kh. S. Bagdasar’yan, The Theory of Radical Polymerization (Nauka, Moscow, 1966) [in Russian].Google Scholar
  54. 54.
    Organic Chemistry, Eds. by M. A. Foxe and J. K. Whitesell (Jones and Bartlett, 2004).Google Scholar
  55. 55.
    P. Sykes, A Guidebook to Mechanism in Organic Chemistry (Pearson Prentice Hall, 1986).Google Scholar
  56. 56.
    S. R. Elsheimer, Introduction to Organic Chemistry (Blackwell Science, 2000).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. B. Golubev
    • 1
  • A. N. Filippov
    • 1
  • E. V. Chernikova
    • 1
    Email author
  • M. L. Coote
    • 2
  • C. Y. Lin
    • 2
  • G. Gryn’ova
    • 2
  1. 1.Faculty of ChemistryMoscow State UniversityMoscowRussia
  2. 2.ARC Centre of Excellence for Free-Radical Chemistry and Biotechnology, Research School of ChemistryAustralian National UniversityCanberraAustralia

Personalised recommendations