Skip to main content
Log in

Numerical Study of Heat Transfer in a Lattice Matrix with Varying the Crossing Angle

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The development of methods for intensifying heat transfer is a priority task in various technological processes in the energy sector and aerospace engineering. One of the effective ways to enhance heat transfer is to install mutually intersecting ribs on opposite walls of the channels (vortex matrices or latticework). The use of such channels leads to formation of a complex three-dimensional turbulent flow, which contributes to a significant enhancement of heat transfer. Most of available literature publications deal with the study of the integral characteristics of hydraulic losses and the degree of heat transfer enhancement depending on a large number of defining parameters. At that, the local flow structure and heat transfer have not been fully investigated. In particular, this conclusion relates to understanding the mechanism of the flow from subchannels formed by parallel ribs on opposite walls and interaction of these flows with the lateral bounding walls of the latticework. In this work, the main attention is paid to the study of the flow processes without the influence of the side walls of the channel. The results of numerical calculations of separated turbulent flow in a latticework obtained using the RANS and LES methods and the OpenFOAM package are presented here. Calculations were performed for the angles of rib crossing \(2\beta=60\div120\) on opposite heat transfer surfaces and the Reynolds number Re = \(5,000\div15,000\), determined from the average flow rate and channel height. Data on the flow structure in a cell of a latticework were obtained. It is shown how the angle of crossing affects the interaction of flows in the lower and upper subchannels. The distribution of local heat transfer on the channel wall and the dependence of the average Nusselt number on the angle of crossing and the Reynolds number were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

REFERENCES

  1. Mousa, M.H., Miljkovic, N., and Nawaz, K., Review of Heat Transfer Enhancement Techniques for Single Phase Flows, Renew. Sust. Energ. Rev., 2021, vol. 137, p. 110566; https://doi.org/10.1016/ j.rser.2020.110566

    Article  Google Scholar 

  2. Terekhov, V.I., Dyachenko, A.Yu., Smulsky, Ya.J., Bogatko, T.V., and Yarygina, N.I., Heat Transfer in Subsonic Separated Flows, Springer, 2022.

    Book  Google Scholar 

  3. Liang, C., Rao, Y., Luo, J., and Luo, X., Experimental and Numerical Study of Turbulent Flow and Heat Transfer in a Wedge-Shaped Channel with Guiding Pin Fins for Turbine Blade Trailing Edge Cooling, Int. J. Heat Mass Transfer, 2021, vol. 178, p. 121590; https://doi.org/10.1016/ j.ijheatmasstransfer.2021.121590

    Article  Google Scholar 

  4. Ligrani, P.M., Oliveira M.M., and Blaskovich, T., Comparison of Heat Transfer Augmentation Techniques, AIAA J., 2003, vol. 41, pp. 337–362; https://doi.org/10.2514/2.1964

    Article  ADS  Google Scholar 

  5. Kaewchoothong, N., Maliwan, K., Takeishi, K., and Nuntadusit, C., Effect of Inclined Ribs on Heat Transfer Coefficient in Stationary Square Channel, Theor. Appl. Mech. Lett., 2017, vol. 7, pp. 344–350; https://doi.org/10.1016/j.taml.2017.09.013

    Article  Google Scholar 

  6. Jiang, G., Shi, X., and Gao, J., Study on Flow and Heat Transfer Characteristics of the Mist/Steam Two-Phase Flow in Rectangular Channels with 60 Deg. Ribs, 2018, Int. J. Heat Mass Transfer, vol. 120, pp. 1101–1117; https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.082

    Article  Google Scholar 

  7. Wang, S., Du, W., Luo, L., Qiu, D., Zhang, X., and Li, S., Flow Structure and Heat Transfer Characteristics of a Dimpled Wedge Channel with a Bleed Hole in Dimple at Different Orientations and Locations, Int. J. Heat Mass Tramsfer, 2018, vol. 117, pp. 1216–1230; https://doi.org/10.1016/ j.ijheatmasstransfer.2017.10.087

    Article  Google Scholar 

  8. Yoon, H.S., Park, S.H., Choi, C., and Ha, M.Y., Numerical Study on Characteristics of Flow and Heat Transfer in a Cooling Passage with a Tear-Drop Dimple Surface, Int. J. Therm. Sci., 2015, vol. 89, pp. 121–135; https://doi.org/10.1016/j.ijthermalsci.2014.11.002

    Article  Google Scholar 

  9. Chen, L., Asai, K., Nonomura, T., Xi, G., and Liu, T., A Review of Backward–Facing Step (BFS) Flow Mechanisms, Heat Transfer and Control, Therm. Sci. Eng. Prog., 2018, vol. 6, pp. 194–216; https://doi.org/10.1016/j.tsep.2018.04.004

    Article  Google Scholar 

  10. Gao, N., Sun, H., and Ewing, D., Heat Transfer to Impinging Round Jets with Triangular Tabs, Int. J. Heat Mass Tramsfer, 2003, vol. 46, pp. 2557–2569; https://doi.org/10.1016/S0017-9310(03)00034-6

    Article  Google Scholar 

  11. Terekhov, V.I., Dyachenko, A.Yu., Smulsky, Ya.J., and Sunden, B., Intensification of Heat Transfer Behind the Backward–Facing Step Using Tabs, Thermal Sci. Engin. Progr., 2022, vol. 35, p. 101475; https://doi.org/10.1016/j.tsep.2022.101475

    Article  Google Scholar 

  12. Nagoga, G.P., Kopylov, I.S., and Rukin, M.V., Heat Transfer and Hydraulic Resistance in Tracts of Coplanar-Crossing Channels Interuniversity, in Sci. Collection: Work Processes in Cooled Turbomachines of Gas Turbine Engines, Kazan: 1989, pp. 35–41.

  13. Gorelov, V., Goikhenberg, M., and Malkov, V., The Investigation of Heat Transfer in Cooled Blades of Gas Turbines, AIAA-90-2144, 1990; https://doi.org/10.2514/6.1990-2144

  14. Kudryavtsev, V.M., Orlin, S.A., and Posnov, S.A., Experimental Research of Flow Resistance in Circuits with Complanar Channels, Izv. Vyssh. Uchebn. Zaved., Mashinostr. [Proc. Univ., Mech. Eng.], 1983, vol. 4, pp. 54–58.

  15. Aleksandrenkov, V.P., Efficiency of Heat Transfer Intensification in Circular Finned Cooling Circuits of Combustion Chambers, Vestn. Bauman Mosk. Gos. Tekh. Univ., Mashinostr., 2013, vol. 3, pp. 111–121.

    Article  Google Scholar 

  16. Aleksandrenkov, V.P., Thermohydraulic Efficiency of Complanar Cooling Circuits for Liquid-Propellant Engine Chambers, Vestn. Bauman Mosk. Gos. Tekh. Univ., Mashinostr., 2015, vol. 2, pp. 44–56.

    Article  Google Scholar 

  17. Carcasci, C., Facchini, B., Pievaroli, M., Tarchi, L., Ceccherini, A., and Innocenti, L., Heat Transfer and Pressure Loss Measurements of Matrix Cooling Geometries for Gas Turbine Airfoils, J. Turbomach., 2014, vol. 136, p. 121005; https://doi.org/10.1115/1.4028237

    Article  Google Scholar 

  18. Dua, W., Luo, L., Wanga, S., Liub, J., and Sunden, B., Heat Transfer and Flow Structure in a Detached Latticework Duct, Appl. Thermal Engin., 2019, vol. 155, pp. 24–39; https://doi.org/10.1016/ j.applthermaleng.2019.03.148

    Article  Google Scholar 

  19. Acharya, S., Zhou, F., Lagrone, J., Mahmood, G., and Bunker, R.S., Latticework (Vortex) Cooling Effectiveness: Rotating Channel Experiments, J. Turbomach., 2005, vol. 127, pp. 471–478; https://doi.org/10.1115/1.1860381

    Article  Google Scholar 

  20. Deng, H., Wang, K., Zhu, J., and Pan, W., Experimental Study on Heat Transfer and Flow Resistance in Improved Latticework Cooling Channels, J. Therm. Sci., 2013, vol. 22, pp. 250–256; 10.1007/s11630-013-0620-3

    Article  ADS  Google Scholar 

  21. Tsuru, T., Ishida, K., Fujita, J., and Takeishi, K., Three-Dimensional Visualization of Flow Characteristics Using a Magnetic Resonance Imaging (MRI) in a Lattice Cooling Channel, J. Turbomach., 2019, vol. 141, p. 061003; https://doi.org/10.1115/1.4041908

    Article  Google Scholar 

  22. Luo, J., Rao, Y., Yang, L., Yang, M., and Su, H., Computational Analysis of Turbulent Flow and Heat Transfer in Latticework Cooling Structures under Various Flow Configurations, Int. J. Thermal Sci., 2021, vol. 164, p. 106912; https://doi.org/10.1016/j.ijthermalsci.2021.106912

    Article  Google Scholar 

  23. Terekhov, V.I., Zolotukhin, A.V., and Chohar, I.A., Experimental Study of a Flow Structure in Coplanar Channels, J. Phys. Conf. Ser., 2020, vol. 1683, p. 022088; DOI:10.1088/1742-6596/1683/2/022088

    Article  Google Scholar 

  24. Zolotukhin, A.V., Chokhar, I.A., and Terekhov, V.I., Experimental Study of the Flow Turbulent Structure in a Cell of a Lattice Matrix, Thermophys. Aeromech., 2022, vol. 29, pp. 1013–1020; DOI:10.1134/S0869864322060221

    Article  ADS  Google Scholar 

  25. Durbin, P.A., Near-Wall Turbulence Closure Modeling without Damping Function, Theor. Comput. Fluid Dyn., 1991, vol. 3, pp. 1–13; DOI: 10.1007/BF00271513

    Article  ADS  Google Scholar 

  26. Barsukov, A.V., Terekhov, V.V., and Terekhov, V.I., Numerical Simulation of Flow Dynamics and Heat Transfer in a Rectangular Channel with Periodic Ribs on One of One of the Walls, J. Phys. Conf. Ser., 2021, vol. 2119, pp. 012028; DOI:10.1088/1742-6596/2119/1/012028

    Article  Google Scholar 

  27. Barsukov, A.V., Terekhov, V.V., and Terekhov, V.I., Effect of a Passive Disturbance on the Flow Structure and Heat Transfer in the Separation Region Behind a Backward-Facing Step, High Temp., 2021, vol. 59, pp. 115–120; https://doi.org/10.1134/S0018151X21010028

    Article  Google Scholar 

  28. Barsukov, A.V., Terekhov, V.V., and Terekhov, V.I., Numerical Investigation of the Structure of Turbulent Flow and Heat Transfer in a Planar Channel with Hexagonal Honeycomb of Varying Depth. J. Appl. Ind. Math., 2023, vol. 17, pp. 242–250; doi.org/10.1134/S1990478923020023

    Article  MathSciNet  Google Scholar 

  29. Deardoff, J.W., The Use of Subgrid Transport Equations in a Three Dimensional Model of Atmospheric Turbulence, ASME J. Fluids Eng., 1973, vol. 95, pp. 429–438; https://doi.org/10.1115/1.3447047

    Article  Google Scholar 

  30. Philippov, M.V., Chokhar, I.A., Zolotukhin, A.V., Terekhov V.I., and Baranov, I.N., Experimental Study of the Three-Dimensional Flow Structure in Matrix Channels, J. Phys. Conf. Ser., 2021, vol. 2057, p. 012027; DOI:10.1088/1742-6596/2057/1/012027

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Barsukov.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barsukov, A.V., Terekhov, V.V. & Terekhov, V.I. Numerical Study of Heat Transfer in a Lattice Matrix with Varying the Crossing Angle. J. Engin. Thermophys. 33, 220–229 (2024). https://doi.org/10.1134/S1810232824010156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232824010156

Navigation