Skip to main content
Log in

Fundamentals of Hydrodynamics and Heat and Mass Transfer at Film Condensation of Stationary Vapor on Horizontal Tube Bundles: A Brief Review

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

Condensers represent an indispensable part of equipment of any power, chemical-technological, cryogenic, refrigeration and other installations used in industry. Reducing the weight, dimensions and cost of devices is always an urgent task. The process of condensation in real devices is a very complex phenomenon. The intensity of energy transfer from vapor to a solid cooled wall is determined, other things being equal, by three interrelated factors: (i) variable irrigation density and change in film flow hydrodynamics as the irrigation density changes, (ii) variable vapor velocity affecting a condensate film in the varying film and vapor flow regimes, and (iii) effect of the diffusion process on heat transfer during condensation of vapor with non-condensable impurities. The authors consider that they have to describe the issues that are poorly covered in the literature, although these issues are of fundamental importance for understanding the process under study. In this paper, the main factors that determine heat transfer during stationary vapor condensation on horizontal tube bundles are considered. An algorithm for calculating a condenser at film condensation of stationary vapor without non-condensable impurities is proposed. A critical analysis of modern experimental studies on heat transfer during condensation has been carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

REFERENCES

  1. Joule, J.P., On the Surface-Condensation Steam, Philos. Trans. Royal Soc. London, 1861, vol. 151, pp. 133–160.

    Article  ADS  Google Scholar 

  2. Short, B.E. and Brown, H.E., Condensation of Vapor on Vertical Banks of Horizontal Tubes, Proc. Inst. Mech. Eng., General Discussion on Heat Transfer, 27, 1951, vol. 31.

  3. Bromley, L.A., Effect of Heat Capacity of Condensate, Ind. Eng. Chem., 1952, vol. 44, no. 12, pp. 2966–2969.

    Article  Google Scholar 

  4. Shekriladze, I.G. and Gomelauri, V.I., Theoretical Study of Laminar Film Condensation of Flowing Vapour, Int. J. Heat Mass Transfer, 1966, vol. 9, no. 6, 581–591; https://doi.org/10.1016/0017-9310(66)90092-5

    Article  Google Scholar 

  5. Fujii, T., Uehara, H., and Kurata, Ch., Laminar Filmwise Condensation of Flowing Vapour on a Horizontal Cylinder, Int. J. Heat Mass Transfer, 1972, vol. 15, no. 2, pp. 235–246; https://doi.org/10.1016/0017-9310(72)90071-3

    Article  Google Scholar 

  6. Fujii, T., Uehara, H., Hirata, K., and Oda, K., Heat Transfer and Flow Resistance in Condensation of Low Pressure Steam Flowing through Tube Banks, Int. J. Heat Mass Transfer, 1972, vol. 15, no. 2, pp. 247–260; https://doi.org/10.1016/0017-9310(72)90072-5

    Article  Google Scholar 

  7. Sukhatme, S.P., Jagadish, B.S., and Prabhakaran, P., Film Condensation of R-11 Vapour on Single Horizontal Enhanced Condenser Tubes, ASME J. Heat Transfer, 1990, vol. 112, no. 1, pp. 229–234; https://doi.org/10.1115/1.2910350

    Article  Google Scholar 

  8. Sreepathi, L.K., Bapat, S.L., and Sukhatme S.P., Heat Transfer during Film Condensation of R-123 Vapour on Horizontal Integral-Fin Tubes, J. Enhanced Heat Transfer, 1996, vol. 3, no. 2, pp. 147–164; https://doi.org/10.1615/JEnhHeatTransferv3.i2.70

    Article  Google Scholar 

  9. Kumar, R., Varma, H.K., Mohanty, B., and Agrawal, K.N., Augmentation of Outside Tube Heat Transfer Coefficient during Condensation of Steam over Horizontal Copper Tubes, Int. Comm. Heat Mass Transfer, 1998, vol. 25, no. 1, pp. 81–91; https://doi.org/10.1016/S0735-1933(97)00139-5

    Article  Google Scholar 

  10. McNeil, D.A., Burnside, B.M., and Cuthbertson, G., A Comparison between a Small In-Line and a Staggered Tube Bank Condensing Steam Filmwise at Low Pressures, Exp. Thermal Fluid Sci., 2001, vol. 25, nos. 3/4, pp. 113–123; https://doi.org/10.1016/S0894-1777(01)00085-1

    Article  Google Scholar 

  11. Burnside, B.M., Cuthbertson, G., and McNeil, D.A., Pressure Drop Measurements in Condensing Steam over a Horizontal Bundle of Staggered Tubes, Int. J. Therm. Sci., 2001, vol. 40, no. 10, pp. 917–926; https://doi.org/10.1016/S1290-0729(01)01278-9

    Article  Google Scholar 

  12. Eckels, S.J., Effects of Inundation and Miscible Oil upon Condensation Heat Transfer Performance of R-134a, ASHRAE Rep., 2002, vol. 984.

  13. Browne, M.W. and Bansal, P.K., An Overview of Condensation Heat Transfer on Horizontal Tube Bundles, Appl. Thermal Eng., 1999, vol. 19, no. 6, pp. 565–594; https://doi.org/10.1016/S1359-4311(98)00055-6

    Article  Google Scholar 

  14. Cavallini, A., Censi, G., Del Col, D., Doretti, L., Longo, G.A., Rossetto, L., and Zilio, C., Condensation inside and outside Smooth and Enhanced Tubes—A Review of Recent Research, Int. J. Refr., 2003, vol. 26, no. 4, pp. 373–392; https://doi.org/10.1016/S0140-7007(02)00150-0

    Article  Google Scholar 

  15. Miyara, A., Condensation of Hydrocarbons—A Review, Int. J. Refr., 2008, vol. 31, no. 4, pp. 621–632; https://doi.org/10.1016/j.ijrefrig.2007.12.003

    Article  Google Scholar 

  16. Bonneau, C., Josset, C., Melot, V., and Auvity, B., Comprehensive Review of Pure Vapour Condensation outside of Horizontal Smooth Tubes, Nuclear Eng. Design, 2019, vol. 349, pp. 92–108; https://doi.org/10.1016/j.nucengdes.2019.04.005

    Article  Google Scholar 

  17. Cuthbertson, G., An Experimental Investigation of Dropwise and Filmwise Condensation of Low Pressure Steam in Tube Banks, Doctoral dissertation, Heriot-Watt University, 1999, vols. 1/2.

  18. Gstöhl, D., Heat Transfer and Flow Visualization of Falling Film Condensation on Tube Arrays with Plain and Enhanced Surfaces, Thesis. EPFL, 2004.

  19. Butterworth, D., Inundation without Vapour Shear, in Power Condenser Heat Transfer Technology: Computer Modeling, Design, Fouling, Hemisphere Publ., 1981. pp. 271–277.

  20. Butterworth, D., Application of the Models to Bundles of Horizontal Tubes, in Heat Exchanger Design Handbook, Hemisphere Publ., 1983, vol. 2, pp. 10–12.

  21. Kedzierski, M., Chato, J., and Rabas, T., Condensation, in Handbook of Heat Transfer, Wiley, 2003.

    Google Scholar 

  22. Bejan, A., Fundamental Principles, in Convection Heat Transfer, 3d ed., Wiley, 2004, pp. 1–29.

    Google Scholar 

  23. Isachenko, V.P., Teploobmen pri kondensatsii (Heat Transfer in Condensation), Moscow: Energiya, 1977.

    Google Scholar 

  24. Krektunov, O.P. and Savus, A.S., Processy‘ kondensatsii i kondensatory maslozhirovogo proizvodstva (Processes of Condensation and Condensers of Oil and Fat Production), Firsova E.P., Ed., St. Petersburg, 1998.

  25. Milman, O.O. and Fedirov, V.A. Kondensatory paroturbinnykh ustanovok (Air Condensing Units), Moscow: MEI, 2002.

    Google Scholar 

  26. Gogonin, I.I., Issledovanie teploobmena pri plenochnoi kondensatsii para (Investigation of Heat Transfer during Film Condensation of Vapor), Novosibirsk: SB RAS, 2015.

    Google Scholar 

  27. Standards for Steam Surface Condensers, 11th ed., Cleveland: Heat Exchange Institute, 2012.

  28. Nusselt, W., Die Oberfluchenkondensation des Wasserdampfes, VDI-Zc, vol. 60, 1916.

  29. Brauer, H., Stromung and Warmeubergang bei Rieselfilmen, VDI Forschungself, vol. 457 (1956), B22.

  30. Kholostykh, V.I., Blyakher, I.G., and Shekhtman, A.A., Flow of a Liquid Film along a Vertical Surface, J. Eng. Phys. Thermophys., 1972, vol. 22, no. 3, pp. 348–351; https://doi.org/10.1007/BF00829469

    Article  ADS  Google Scholar 

  31. Alekseenko, S.V., Nakoryakov, V.E., and Pokusaev, B.G., Wave Flow of Liquid Films, New York: Begell House, 1994.

    Book  Google Scholar 

  32. Kutateladze, S.S. and Nakoryakov, V.E., Teplomassoobmen i volny v gazozhidkostnykh sistemakh (Heat and Mass Transfer and Waves in Gas-Liquid Systems), Novosibirsk: Nauka, 1984.

    Google Scholar 

  33. Colburn, A.P., Calculation of Condensation with a Portion of Condensate Layer in Turbulent Motion, Ind. Eng. Chem., 1934, vol. 26, no. 4, pp. 432–434; https://doi.org/10.1021/ie50292a016

    Article  Google Scholar 

  34. Berman, L.D., et al., Heat Transfer during Film Condensation of Steam on Transversely Streamlined Horizontal Pipes, in Konvektivnaya teploperedacha v dvukhfaznom i odnofaznom potokakh (Convective Heat Transfer in Two-Phase and Single-Phase Flows), Borishansky, V.M. and Paleyev, I.I., Eds., Moscow: Energia, 1964, pp. 7–53.

    Google Scholar 

  35. Gogonin, I.I. and Kataev, A.I., Methodological Errors in Experimental Studies of Heat Transfer during Condensation, Thermal Eng., 2000, vol. 12, pp. 48–53.

    Article  Google Scholar 

  36. Gogonin, I.I., Sosunov, V.I., and Kataev, A.I., Heat Transfer during Condensation of Water Steam on a Bundle of Horizontal Pipes, Thermal Eng., 1992, vol. 4, pp. 48–51.

    Google Scholar 

  37. Milman, O.O. and Shklover, G.G., Dependence of the Averaged Values of Heat Transfer and Heat Transfer Coefficients on the Method of Averaging, Thermal Eng., 1977, vol. 4, pp. 24–29.

    Google Scholar 

  38. Shklover, G.G., Usachev, A.M., and Kopp, M.I., Heat Transfer and Hydrodynamics during Condensation of Steam on a Horizontal Pipe, in Two-Phase Flows: Heat Transfer and Hydrodynamics, Materials of the 7th All-Union Conf., October, 1985.

  39. Berman, A.D. and Fuks, S.N., Influence of Air Admixture on Heat Transfer during the Condensation of Moving Steam, News All-Union Thermal Engin. Inst., 1952, vol. 11, pp. 11–48.

    Google Scholar 

  40. Isachenko, V.P. and Glushkov, A.F., Heat Transfer during Steam Condensation on a Horizontal Pipe and Condensate Flow From Above, Thermal Eng., 1969, vol. 6, p. 79.

    Google Scholar 

  41. Wanniarachchi, A.S., Marto, P.J., and Rose, J.W., Film Condensation of Steam on Horizontal Finned Tubes: Effect of Fin Spacing, J. Heat Transfer, 1986, vol. 108, no. 4, pp. 960–966.

    Article  Google Scholar 

  42. Young, E.H. and Briggs, D.E., The Condensing of Low Pressure Steam on Vertical Rows of Horizontal Copper and Titanium Tubes, AIChE J., 1966, vol. 12, no. 1, pp. 31–35; https://doi.org/ 10.1002/aic.690120109

    Article  ADS  Google Scholar 

  43. Mills, A.F., Tan, C., and Chung, D.K., Experimental Study of Condensation from Steam-Air Mixtures Flowing over a Horizontal Tube: Overall Condensation Rates, in Int. Heat Transfer Conf. Digital Library, Begel House, 1977.

  44. Ferguson, R.M. and Oakden, J.C., Heat Transfer Coefficients for Water and Steam in a Surface Condenser, in Transaction of Chem. Eng. Congress (World Power Conf.), 1936, vol. 4, pp. 1–32.

  45. Gogonin, I.I., Hydrodynamics and Heat Transfer during Condensation of Stationary Steam on a Horizontal Cylinder, Izv. SO AN USSR. Ser. Tech. Nauk, 1986, vol. 10, no. 2, pp. 24–32.

    Google Scholar 

  46. Gogonin, I.I., Dorokhov, A.R, and Sosunov, V.I., Heat Transfer during Condensation of Stationary Steam on a Bundle of Smooth Horizontal Tubes, Thermal Eng., 1977, vol. 4, pp. 23–36.

    Article  Google Scholar 

  47. Kutateladze, S.S. and Gogonin, I.I., Heat Transfer in Film Condensation of Slowly Moving Vapour, Int. J. Heat Mass Transfer, 1979, vol. 22, no. 12, pp. 1593–1599; https://doi.org/10.1016/0017-9310(79)90075-9

    Article  ADS  Google Scholar 

  48. Kutateladze, S.S., Gogonin, I.I., and Sosunov, V.I., Experimental Study of Heat Transfer during Condensation of Stationary Vapor on a Bundle of Smooth Horizontal Tubes, Theor. Found. Chem. Eng., 1979, vol. 13, pp. 716–720.

  49. White, R.E., Condensation of Refrigerant Vapors—Apparatus and Film Coefficients for Freon-12, Trans. Am. Soc. Mech. Engin., 1948, vol. 70, no. 6, pp. 689–693; https://doi.org/10.1115/1.4017818

    Article  Google Scholar 

  50. Chernobylsky, I.I. and Gorodinskaya, S.A., Investigation of Heat Transfer during Condensation of Ammonia Vapors on the Outer Surface of Pipes, Procs. Inst. Thermal Power Engin. Acad. Sci. Ukr. SSR, Kyiv, 1961, vol. 4, pp. 44–54.

  51. Gogonin, I.I., Sosunov, V.I., Lazarev, S.I., and Kabov, O.A., Heat Transfer while Stationary Vapor Condensation on a bundle of Horizontal Tubes with Different Configuration, Teploenergetika, 1982, vol. 3, pp. 33–36.

    Article  Google Scholar 

  52. Rogers, J.T., Laminar Falling Film Flow and Heat Transfer Characteristics on Horizontal Tubes, Canad. J. Chem. Eng., 1981, vol. 59, no. 2, pp. 213–222; https://doi.org/10.1002/cjce.5450590212

    Article  Google Scholar 

  53. Kutateladze, S.S., Gogonin, I.I., and Sosunov, V.I., The Influence of Condensate Flow Rate on Heat Transfer in Film Condensation of Stationary Vapour on Horizontal Tube Banks, Int. J. Heat Mass Transfer, 1985, vol. 28, no. 5, pp. 1011–1018; https://doi.org/10.1016/0017-9310(85)90283-2

    Article  Google Scholar 

  54. Park, K.J. and Jung, D., Condensation Heat Transfer Coefficients of Flammable Refrigerants on Various Enhanced Tubes, J. Mech. Sci. Technol., 2005, vol. 19, no. 10, pp. 1957–1963; https://doi.org/ 10.1007/BF02984275

    Article  Google Scholar 

  55. Parken, W.H., Fletcher, L.S., Sernas, V., and Han, J.C., Heat Transfer through Falling Film Evaporation and Boiling on Horizontal Tubes, ASME J. Heat Transfer, 1990, vol. 112, no. 3, pp. 744–750; https://doi.org/10.1115/1.2910449

    Article  Google Scholar 

  56. Sajjan, S.K., Kumar, R., and Gupta, A., Experimental Investigation during Condensation of R-600a Vapor over Single Horizontal Integral-Fin Tubes, Int. J. Heat Mass Transfer, 2015, vol. 88, pp. 247–255; https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.079

    Article  Google Scholar 

  57. Sajjan, S.K., Kumar, R., and Gupta, A., Experimental Investigation of Vapor Condensation of Iso-Butane over Single Horizontal Plain Tube under Different Vapor Pressures, Appl. Thermal Eng., 2015, vol. 76, pp. 435–440; https://doi.org/10.1016/j.applthermaleng.2014.11.049

    Article  Google Scholar 

  58. Ji, W.T., Chong, G.H., Zhao, C.Y., Zhang, H., and Tao, W.Q., Condensation Heat Transfer of R134a, R1234ze(E), and R290 on Horizontal Plain and Enhanced Titanium Tubes, Int. J. Refr., 2018, vol. 93, pp. 259–268; https://doi.org/10.1016/j.ijrefrig.2018.06.013

    Article  Google Scholar 

  59. Li, W., Sun, Z.C., Guo, R.H., Ma, X., Liu, Z.C., Kukulka, D.J., Ayub, Z., Chen, W., and He, Y., Condensation Heat Transfer of R410A on Outside of Horizontal Smooth and Three-Dimensional Enhanced Tubes, Int. J. Refr., 2019, vol. 98, pp. 1–14; https://doi.org/10.1016/j.ijrefrig.2018.09.035

    Article  Google Scholar 

  60. Gebauer, T., Al-Badri, A.R., Gotterbarm, A., El Hajal, J., Leipertz, A., and Fröba, A.P., Condensation Heat Transfer on Single Horizontal Smooth and Finned Tubes and Tube Bundles for R134a and Propane, Int. J. Heat Mass Transfer, 2013, vol. 56, nos. 1/2, pp. 516–524; https://doi.org/ 10.1016/j.ijheatmasstransfer.2012.09.049

    Article  Google Scholar 

  61. Grzebielec, A. and Rusowicz, A., Thermal Resistance of Steam Condensation in Horizontal Tube Bundles, J. Power Technol., 2011, vol. 91, no. 1, p. 41.

    Google Scholar 

  62. Li, S. and Ju, Y., Numerical Study on the Condensation Characteristics of Various Refrigerants outside a Horizontal Plain Tube at Low Temperatures, Int. J. Thermal Sci., 2022, vol. 176, p. 107508; https://doi.org/10.1016/j.ijthermalsci.2022.107508

    Article  Google Scholar 

  63. Zhao, C.Y., Ji, W.T., Jin, P.H., Zhong, Y.J., and Tao, W.Q., Hydrodynamic Behaviors of the Falling Film Flow on a Horizontal Tube and Construction of New Film Thickness Correlation, Int. J. Heat Mass Transfer, 2018, vol. 119, pp. 564–576; https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.086

    Article  Google Scholar 

  64. Kumar, R., Varma, H.K., Mohanty, B., and Agrawal, K.N., Condensation of R-134a Vapor over Single Horizontal Circular Integral-Fin Tubes, Heat Transfer Eng., 2000, vol. 21, no. 2, pp. 29–39; https://doi.org/10.1080/014576300271004

    Article  ADS  Google Scholar 

  65. Cavallini, A., Censi, G., Del Col, D., Doretti, L., Longo, G.A., and Rossetto, L., Experimental Investigation on Condensation Heat Transfer and Pressure Drop of New HFC Refrigerants (R134a, R125, R32, R410A, R236ea) in a Horizontal Tube, Int. J. Refr., 2001, vol. 24, no. 1, pp. 73–87; https://doi.org/10.1016/S0140-7007(00)00070-0

    Article  Google Scholar 

  66. Jung, D., Kim, C.B., Cho, S., and Song, K., Condensation Heat Transfer Coefficients of Enhanced Tubes with Alternative Refrigerants for CFC11 and CFC12, Int. J. Refr., 1999, vol. 22, no. 7, pp. 548–557; https://doi.org/10.1016/S0140-7007(99)00020-1

    Article  Google Scholar 

  67. Kutateladze, S.S. , Gogonin, I.I., Dorokhov, A.R., and Sosunov, V.I., Heat Transfer in Vapor Condensation on a Horizontal Tube Bundle, Heat Transfer Sov. Res., 1981, vol. 13, no. 3, pp. 32–50.

  68. Kumar, R., Varma, H.K., Mohanty, B., and Agrawal, K.N., Prediction of Heat Transfer Coefficient during Condensation of Water and R-134a on Single Horizontal Integral-Fin Tubes, Int. J. Refr., 2002, vol. 25, no. 1, pp. 111–126; https://doi.org/10.1016/S0140-7007(00)00094-3

    Article  Google Scholar 

  69. Briggs, A. and Rose, J.W., Effect of Fin Efficiency on a Model for Condensation Heat Transfer on a Horizontal, Integral-Fin Tube, Int. J. Heat Mass Transfer, 1994, vol. 37, no. 1, pp. 457–463; https://doi.org/10.1016/0017-9310(94)90045-0

    Article  Google Scholar 

  70. Hughes, M.T. and Garimella, S., A Review of Active Enhancement Methods for Boiling and Condensation, Int. J. Heat Mass Transfer, 2024, vol. 218, p. 124752; https://doi.org/10.1016/ j.ijheatmasstransfer.2023.124752.

    Article  Google Scholar 

  71. Belghazi, M., Bontemps, A., Signe, J.C., and Marvillet, C., Condensation Heat Transfer of a Pure Fluid and Binary Mixture Outside a Bundle of Smooth Horizontal Tubes. Comparison of Experimental Results and a Classical Model, Int. J. Refr., 2001, vol. 24, no. 8, pp. 841–855; https://doi.org/10.1016/S0140-7007(00)00037-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Volodin.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogonin, I.I., Volodin, O.A. Fundamentals of Hydrodynamics and Heat and Mass Transfer at Film Condensation of Stationary Vapor on Horizontal Tube Bundles: A Brief Review. J. Engin. Thermophys. 33, 200–219 (2024). https://doi.org/10.1134/S1810232824010144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232824010144

Navigation