Skip to main content
Log in

Pool Boiling Heat Transfer Performance of R-134a on Microporous Al Surfaces Electrodeposited from AlCl3/Urea Ionic Liquid

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

Development of smart heating surfaces to enhance the performance of pool boiling heat transfer (BHT) has great significance in pool boiling applications. This paper presents the results of a study of improved pool BHT performance of R-134a on horizontal Al surfaces with microporous coating (diameter = 9 mm) at saturation temperature. Microporous Al coatings were fabricated by electrodeposition using AlCl3/urea ionic liquid (IL). The effect of various electrolyte temperatures (30°C, 40°C, 50°C, and 60°C) on the morphology, microstructure, porosity, thickness, and surface roughness of Al coatings was investigated. The pool BHT experiments were performed for increase in the heat flux, varying from 9.51 kW/m2 to 75.14 kW/m2. For the microporous Al coating electrodeposited at an electrolyte bath temperature of 30°C, 40°C, 50°C, and 60°C, the heat transfer coefficient (HTC) value was increased by 58%, 75%, 92%, and 109%, respectively, compared with the bare Al surface. The differences in the HTC augmentation for Al-coated surfaces can be explained by variations in the thickness of the microporous structure and in their surface characteristics such as porosity and surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

REFERENCES

  1. Ranjan, A., Ahmad, I., Gouda, R.K., Pathak, M., and Khan, M.K., Enhancement of Critical Heat Flux (CHF) in Pool Boiling With Anodized Copper Surfaces, Int. J. Therm. Sci., 2022, vol. 172, p. 107338.

    Article  Google Scholar 

  2. Petrovic, M.M. and Stevanovic, V.D., Pool Boiling Simulation with Two-Fluid And Grid Resolved Wall Boiling Model, Int. J. Multiph. Flow, 2021, vol. 144, p. 103806.

    Article  MathSciNet  Google Scholar 

  3. Doran, B., Zhang, B., Davani, S., Osafo, K.A., Sutka, O., Walker, A., Mueller, N., Akwaboa, S., Mensah, P., Meng, W.J., and Moore, A.L., Spatially Periodic Vapor Bubble Activity during Subcooled Pool Boiling on 1D Aluminum Alloy Micro-Fin Arrays, Int. J. Heat Mass Transfer, 2021, vol. 180, p. 121760.

    Article  Google Scholar 

  4. Katarkar, A.S., Pingale, A.D., Belgamwar, S.U., and Bhaumik, S., Experimental Study of Pool Boiling Enhancement Using a Two-Step Electrodeposited Cu–GNPs Nanocomposite Porous Surface with R-134a, J. Heat Transfer, 2021, vol. 143, no. 12, p. 121601.

    Article  Google Scholar 

  5. Zhang, Y. and Wang, S., Enhanced Critical Heat Flux of Pool Boiling by Vapor Management, Appl. Therm. Eng., 2021, p. 117925.

  6. Kumar, N., Ghosh, P., and Shukla, P., Development of an Approximate Model for the Prediction of Bubble Departure Diameter in Pool Boiling of Water, Int. Comm. Heat Mass Transfer, 2021, vol. 127, p. 105531.

    Article  Google Scholar 

  7. Sheikholeslami, M., Gorji-Bandpy, M., and Ganji, D.D., Review of Heat Transfer Enhancement Methods: Focus on Passive Methods Using Swirl Flow Devices, Renew. Sustain. Energy Rev., 2015, vol. 49, pp. 444–469.

    Article  Google Scholar 

  8. Dewangan, A.K., Kumar, A., and Kumar, R., Pool Boiling of Iso-Butane and Quasi Azeotropic Refrigerant Mixture on Coated Surfaces, Exp. Therm. Fluid Sci., 2017, vol. 85, pp. 176–188.

    Article  Google Scholar 

  9. Bostanci, H., Singh, V., Kizito, J.P., Rini, D.P., Seal, S., and Chow, L.C., Microscale Surface Modifications for Heat Transfer Enhancement, ACS Appl. Mater. Interf., 2013, vol. 5, no. 19, pp. 9572–9578.

    Article  Google Scholar 

  10. Jaikumar, A. and Kandlikar, S.G., Enhanced Pool Boiling Heat Transfer Mechanisms for Selectively Sintered Open Microchannels, Int. J. Heat Mass Transfer, 2015, vol. 88, pp. 652–661.

    Article  Google Scholar 

  11. Ahn, H.S., Sinha, N., Zhang, M., Banerjee, D., Fang, S., and Baughman, R.H., Pool Boiling Experiments on Multiwalled Carbon Nanotube (MWCNT) Forests, J. Heat Transfer, 2006, vol. 128, no. 12, pp. 1335–1342.

    Article  Google Scholar 

  12. Das, S. and Bhaumik, S., Enhancement of Nucleate Pool Boiling Heat Transfer on Titanium Oxide Thin Film Surface, Arab. J. Sci. Eng., 2014, vol. 39, no. 10, pp. 7385–7395.

    Article  Google Scholar 

  13. Katarkar, A.S., Pingale, A.D., Belgamwar, S.U., and Bhaumik, S., Effect of GNPs Concentration on the Pool Boiling Performance of R-134a on Cu–GNPs Nanocomposite Coatings Prepared by a Two-Step Electrodeposition Method, Int. J. Thermophys., 2021, vol. 42, no. 8, p. 124.

    Article  ADS  Google Scholar 

  14. Shim, D. Il, Choi, G., Lee, N., Kim, T., Kim, B.S., and Cho, H.H., Enhancement of Pool Boiling Heat Transfer Using Aligned Silicon Nanowire Arrays, ACS Appl. Mater. Interf., 2017, vol. 9, no. 20, pp. 17595–17602.

    Article  Google Scholar 

  15. Jun, S., Kim, J., Son, D., Kim, H.Y., and You, S.M., Enhancement of Pool Boiling Heat Transfer in Water Using Sintered Copper Microporous Coatings, Nucl. Eng. Technol., 2016, vol. 48, no. 4, pp. 932–940.

    Article  Google Scholar 

  16. Cooke, D. and Kandlikar, S.G., Effect of Open Microchannel Geometry on Pool Boiling Enhancement, Int. J. Heat Mass Transfer, 2012, vol. 55, no. 4, pp. 1004–1013.

    Article  Google Scholar 

  17. Saha, B., Das, N.S., and Chattopadhyay, K.K., Combined Effect of Oxygen Deficient Point Defects and Ni Doping in Radio Frequency Magnetron Sputtering Deposited ZnO Thin Films, Thin Solid Films, 2014, vol. 562, pp. 37–42.

    Article  ADS  Google Scholar 

  18. Takata, Y., Hidaka, S., Masuda, M., and Ito, T., Pool Boiling on a Superhydrophilic Surface, Int. J. Energy Res., 2003, vol. 27, no. 2, pp. 111–119.

    Article  Google Scholar 

  19. Patil, C.M., Santhanam, K.S.V., and Kandlikar, S.G., Development of a Two-Step Electrodeposition Process for Enhancing Pool Boiling, Int. J. Heat Mass Transfer, 2014, vol. 79, pp. 989–1001.

    Article  Google Scholar 

  20. Mehdikhani, A., Moghadasi, H., and Saffari, H., An Experimental Investigation of Pool Boiling Augmentation Using Four-Step Electrodeposited Micro/Nanostructured Porous Surface in Distilled Water, Int. J. Mech. Sci., 2020, vol. 187, p. 105924.

    Article  Google Scholar 

  21. Gao, J., Lu, L.-S., Sun, J.-W., Liu, X.-K., and Tang, B., Enhanced Boiling Performance of a Nanoporous Copper Surface by Electrodeposition and Heat Treatment, Heat Mass Transfer, 2017, vol. 53, no. 3, pp. 947–958.

    Article  ADS  Google Scholar 

  22. Gheitaghy, A.M., Saffari, H., Ghasimi, D., and Ghasemi, A., Effect of Electrolyte Temperature on Porous Electrodeposited Copper for Pool Boiling Enhancement, Appl. Therm. Eng., 2017, vol. 113, pp. 1097–1106.

    Article  Google Scholar 

  23. Rishi, A.M., Gupta, A., and Kandlikar, S.G., Improving Aging Performance of Electrodeposited Copper Coatings during Pool Boiling, Appl. Therm. Eng., 2018, vol. 140, pp. 406–414.

    Article  Google Scholar 

  24. Jaikumar, A., Santhanam, K.S.V., Kandlikar, S.G., Raya, I.B.P., and Raghupathi, P., Electrochemical Deposition of Copper on Graphene with High Heat Transfer Coefficient, ECS Trans., 2015, vol. 66, no. 30, pp. 55–64.

    Article  Google Scholar 

  25. Kumar G., U., Suresh, S., Thansekhar, M.R., and Babu P.D., Effect of Diameter of Metal Nanowires on Pool Boiling Heat Transfer with FC-72, Appl. Surf. Sci., 2017, vol. 423, pp. 509–520.

    Article  ADS  Google Scholar 

  26. Gupta, S.K. and Misra, R.D., Effect of Two-Step Electrodeposited Cu–TiO2 Nanocomposite Coating on Pool Boiling Heat Transfer Performance, J. Therm. An. Calorim., 2019, vol. 136, no. 4, pp. 1781–1793.

    Article  Google Scholar 

  27. El-Genk, M.S. and Ali, A.F., Enhanced Nucleate Boiling on Copper Micro-Porous Surfaces, Int. J. Multiph. Flow, 2010, vol. 36, no. 10, pp. 780–792.

    Article  Google Scholar 

  28. Gheitaghy, A.M., Saffari, H., and Mohebbi, M., Investigation Pool Boiling Heat Transfer in U-Shaped Mesochannel with Electrodeposited Porous Coating, Exp. Therm. Fluid Sci., 2016, vol. 76, pp. 87–97.

    Article  Google Scholar 

  29. Godinez, J.C., Cho, H., Fadda, D., Lee, J., Park, S.J., and You, S.M., Effects of Materials and Microstructures on Pool Boiling of Saturated Water From Metallic Surfaces, Int. J. Therm. Sci., 2021, vol. 165, p. 106929.

    Article  Google Scholar 

  30. Kostecki, M., Woźniak, J., Cygan, T., Petrus, M., and Olszyna, A., Tribological Properties of Aluminium Alloy Composites Reinforced with Multi-Layer Graphene—The Influence of Spark Plasma Texturing Process, Materials, 2017, vol. 10, no. 8, p. 928.

    Article  Google Scholar 

  31. Akgul, B., Erden, F., and Ozbay, S., Porous Cu/Al Composites for Cost-Effective Thermal Management, Powder Technol., 2021, vol. 391, pp. 11–19.

    Article  Google Scholar 

  32. Maniam, K.K. and Paul, S., A Review on the Electrodeposition of Aluminum and Aluminum Alloys in Ionic Liquids, Coatings, 2021, vol. 11, no. 1, p. 80.

    Article  Google Scholar 

  33. Prabu, S. and Wang, H.-W., Factors Affecting the Electrodeposition of Aluminum Metal in an Aluminum Chloride-Urea Electrolyte Solution, J. Chin. Chem. Soc., 2017, vol. 64, no. 12, pp. 1467–1477.

    Article  Google Scholar 

  34. Li, M., Gao, B., Chen, W., Liu, C., Wang, Z., Shi, Z., and Hu, X., Electrodeposition Behavior of Aluminum from Urea-Acetamide-Lithium Halide Low-Temperature Molten Salts, Electrochim. Acta, 2015, vol. 185, pp. 148–155.

    Article  Google Scholar 

  35. Li, M., Aluminum Electrodeposition using AlCl3/Urea Ionic Liquid, Int. J. Electrochem. Sci., 2020, pp. 8498–8505.

    Article  Google Scholar 

  36. Angell, M., Pan, C.-J., Rong, Y., Yuan, C., Lin, M.-C., Hwang, B.-J., and Dai, H., High Coulombic Efficiency Aluminum-Ion Battery Using an AlCl3-Urea Ionic Liquid Analog Electrolyte, Proc. Natl. Acad. Sci., 2017, vol. 114, no. 5, pp. 834–839.

    Article  ADS  Google Scholar 

  37. Schultz, R.R. and Cole, R., Uncertainty Analysis of Boiling Nucleation, AIChE Symp. Ser., AIChE, 1979, pp. 32–38.

  38. Prabu, S. and Wang, H., Electrodeposition of Aluminum on Needle Cathode Using AlCl3/Urea Molten Salts at Low-Temperature and Its Application to Hydrogen Generation, Chin. J. Chem. Eng., 2020, vol. 28, no. 3, pp. 854–863.

    Article  Google Scholar 

  39. Cooper, M.G., Saturation Nucleate Pool Boiling—A Simple Correlation, in First U.K. National Conference on Heat Transfer, Elsevier, 1984, pp. 785–793.

  40. Gorenflo, D., Pool Boiling, VDI Heat Atlas, VDI-Verlag, Dusseldorf: Germany, 1993.

  41. Rohsenow, W.M., A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids, Trans. ASME, 1952, vol. 74, pp. 969–976.

    Google Scholar 

  42. Dewangan, A.K., Kumar, A., and Kumar, R., Experimental Study of Nucleate Boiling Heat Transfer of R-134a and R-600a on Thermal Spray Coating Surfaces, Int. J. Therm. Sci., 2016, vol. 110, pp. 304–313.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Katarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumder, B., Pingale, A.D., Katarkar, A.S. et al. Pool Boiling Heat Transfer Performance of R-134a on Microporous Al Surfaces Electrodeposited from AlCl3/Urea Ionic Liquid. J. Engin. Thermophys. 31, 720–736 (2022). https://doi.org/10.1134/S1810232822040166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232822040166

Navigation