Skip to main content
Log in

Non-Similar Analysis of Nanofluids Flows under the Consequences of Mixed Convection with Lorentz Forces over Stretching/Shrinking Surface

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

Exploration and exploitation of heat transfer through convection are becoming of prime interest for the research community because of various applications of convection heat transfer in industrial processes, modern engineering technologies, geological phenomena, and medical sectors. The key objective of this convective analysis is to explore the impacts of nanofluid flow based on Cu/H2O and Al2O3/H2O nanoparticles. The mixed convection in a stagnation-point flow on a permeable shrinking/stretching surface subjected to heat source/sink and magnetic field effects is investigated. Non-linear convection partial differential equations (PDEs) are used to describe the physical model. In this study, suitable non-similar transformations are adapted to convert the dimensional PDEs into dimensionless PDEs. The validity and range of the presented results is described by comparison and range tables, respectively. With application of the local non-similarity method (LNS), the dimensionless PDEs are approximated by truncated ordinary differential equations (ODEs) of high accuracy. The ODEs are numerically sorted out via well established approaches such as finite-difference-based bvp4c. Furthermore, the notable behavior of appropriate parameters on the temperature and velocity profiles is illustrated through graphs and tabulated presentations. The drag force and heat transfer between the moving fluid and a solid body are estimated numerically in the form of the skin friction coefficient and the Nusselt number. The thermal profile is observed to be enhanced with increase in the nanoparticle volume fraction. Moreover, the obtained results show that increase in the magnetic number raises the magnitude of the skin friction coefficient, while reducing the Nusselt number. The velocity profile of the nanofluid enhances with respect to the mixed convection parameter. Researchers working on the numerical simulation of nanofluids flow might find the current study to be helpful. To the best of the authors’ understanding, the non-similar analysis for the problem considered has not been discussed in the literature yet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Abel, M.S., Tawade, J.V., and Shinde, J.N., The Effects of MHD Flow and Heat Transfer for the UCM Fluid over a Stretching Surface in Presence of Thermal Radiation, Adv. Math. Phys., 2012, article ID 702681; https://doi.org/10.1155/2012/702681.

    Article  MATH  Google Scholar 

  2. Ishak, A., Nazar, R., Bachok, N., and Pop, I., MHD Mixed Convection Flow near the Stagnation-Point on a Vertical Permeable Surface, Physica A: Stat. Mech. Its Appl., 2010, vol. 389, no. 1, pp. 40–46.

    Article  ADS  Google Scholar 

  3. Ali, F.M., Nazar, R., Arifin, N.M., and Pop, I., Mixed Convection Stagnation-Point Flow on Vertical Stretching Sheet with External Magnetic Field, Appl. Math. Mech., 2014, vol. 35, no. 2, pp. 155–166.

    Article  MathSciNet  Google Scholar 

  4. Sharma, P.R., Sinha, S., Yadav, R.S., and Filippov, A.N., MHD Mixed Convective Stagnation Point Flow along a Vertical Stretching Sheet with Heat Source/Sink, Int. J. Heat Mass Transfer, 2018, vol. 117, pp. 780–786.

    Article  Google Scholar 

  5. Mehrez, Z. and El Cafsi, A., Forced Convection Magnetohydrodynamic Al2O3–Cu/Water Hybrid Nanofluid Flow over a Backward-Facing Step, J. Thermal An. Calorim., 2019, vol. 135, no. 2, pp. 1417–1427.

    Article  Google Scholar 

  6. Moghadassi, A., Ghomi, E., and Parvizian, F., A Numerical Study of Water Based Al2O3 and Al2O3–Cu Hybrid Nanofluid Effect on Forced Convective Heat Transfer, Int. J. Thermal Sci., 2015, vol. 92, pp. 50–57.

    Article  Google Scholar 

  7. Gopal, D., Jagadha, S., Sreehari, P., Kishan, N., and Mahendar, D., A Numerical Study of Viscous Dissipation with First Order Chemical Reaction and Ohmic Effects on MHD Nanofluid Flow through an Exponential Stretching Sheet, Materials Today: Procs., 2022, vol. 59, pp. 1028–1033.

    Google Scholar 

  8. Raza, A., Haq, R.U., Shah, S.S., and Alansari, M., Existence of Dual Solution for Micro-Polar Fluid Flow with Convective Boundary Layer in the Presence of Thermal Radiation and Suction/Injection Effects, Int. Comm. Heat Mass Transfer, 2022, vol. 131, p. 105785.

    Article  Google Scholar 

  9. Ho, C.J., Liu, Y.C., Ghalambaz, M., and Yan, W.M., Forced Convection Heat Transfer of Nano-Encapsulated Phase Change Material (NEPCM) Suspension in a Mini-Channel Heatsink, Int. J. Heat Mass Transfer, 2020, vol. 155, p. 119858.

    Article  Google Scholar 

  10. Ghalambaz, M., Mehryan, S.A.M., Mashoofi, N., Hajjar, A., Chamkha, A.J., Sheremet, M., and Younis, O., Free Convective Melting-Solidification Heat Transfer of Nano-Encapsulated Phase Change Particles Suspensions inside a Coaxial Pipe, Adv. Powder Technol., 2020, vol. 31, no. 11, pp. 4470–4481.

    Article  Google Scholar 

  11. Ghalambaz, M., Chamkha, A.J., and Wen, D., Natural Convective Flow and Heat Transfer of Nano-Encapsulated Phase Change Materials (NEPCMs) in a Cavity, Int. J. Heat Mass Transfer, 2019, vol. 138, pp. 738–749.

    Article  Google Scholar 

  12. Ghalambaz, M., Mehryan, S.A.M., Zahmatkesh, I., and Chamkha, A., Free Convection Heat Transfer Analysis of a Suspension of Nano–Encapsulated Phase Change Materials (NEPCMs) in an Inclined Porous Cavity, Int. J. Thermal Sci., 2020, vol. 157, p. 106503.

    Article  Google Scholar 

  13. Sajjad, T., Haq, R.U., and Usman, M., Entropy Generation and Mixed Convection of CuO–Water near an Oblique Stagnation Point: Modified Chebyshev Wavelets Approach, Waves Random Complex Media, 2022, pp. 1–24; DOI: 10.1080/17455030.2022.2048121, 1–24

  14. Alzahrani, F. and Khan, M.I., Analysis of Wu’s Slip and CNTs (Single and Multi-Wall Carbon Nanotubes) in Darcy–Forchheimer Mixed Convective Nanofluid Flow with Magnetic Dipole: Intelligent Nano-Coating Simulation, Materials Sci. Engin.: B, 2022, vol. 277, p. 115586.

    Article  Google Scholar 

  15. Crane, L.J., Flow Past a Stretching Plate, Zeitschrift für angewandte Mathematik und Physik ZAMP, 1970, vol. 21, no. 4, pp. 645–647.

    Article  ADS  Google Scholar 

  16. Ishak, A., Nazar, R., and Pop, I., Boundary Layer Flow and Heat Transfer over an Unsteady Stretching Vertical Surface, Meccanica, 2009, vol. 44, no. 4, pp. 369–375.

    Article  MathSciNet  MATH  Google Scholar 

  17. Magyari, E. and Keller, B., Exact Solutions for Self-Similar Boundary-Layer Flows Induced by Permeable Stretching Walls, Eur. J. Mech.-B/Fluids, 2000, vol. 19, no. 1, pp. 109–122.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Wang, C.Y., Free Convection on a Vertical Stretching Surface. ZAMM–J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik, 1989, vol. 69, no. 11, pp. 418–420.

    Article  ADS  MATH  Google Scholar 

  19. Andersson, H.I., Bech, K.H., and Dandapat, B.S., Magnetohydrodynamic Flow of a Power-Law Fluid over a Stretching Sheet, Int. J. Non-Lin. Mech., 1992, vol. 27, no. 6, pp. 929–936.

    Article  ADS  MATH  Google Scholar 

  20. Char, M.I., Heat Transfer of a Continuous, Stretching Surface with Suction or Blowing, J. Math. An. Appl., 1988, vol. 135, no. 2, pp. 568–580.

    Article  MathSciNet  MATH  Google Scholar 

  21. Goldstein, S., On Backward Boundary Layers and Flow in Converging Passages, J. Fluid Mech., 1965, vol. 21, no. 1, pp. 33–45.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Salmi, A., Madkhali, H.A., Ali, B., Nawaz, M., Alharbi, S.O., and Alqahtani, A.S., Numerical Study of Heat and Mass Transfer Enhancement in Prandtl Fluid MHD Flow Using Cattaneo–Christov Heat Flux Theory, Case Stud. Thermal Engin., 2022, vol. 33, p. 101949.

    Article  Google Scholar 

  23. Khan, M.R., Al-Johani, A.S., Elsiddieg, A.M., Saeed, T., and Abd Allah, A.M., The Computational Study of Heat Transfer and Friction Drag in an Unsteady MHD Radiated Casson Fluid Flow across a Stretching/Shrinking Surface, Int. Comm. Heat Mass Transfer, 2022, vol. 130, p. 105832.

    Article  Google Scholar 

  24. Choi, S.U. and Eastman, J.A., Enhancing Thermal Conductivity of Fluids with Nanoparticles (no. ANL/ MSD/CP-84938; CONF-951135-29), Argonne National Lab., (ANL), Argonne, IL, USA, 1995.

  25. Hwang, K.S., Lee, J.H., and Jang, S.P., Buoyancy-Driven Heat Transfer of Water-Based Al2O3 Nanofluids in a Rectangular Cavity, Int. J. Heat Mass Transfer, 2007, vol. 50, nos. 19/20, pp. 4003–4010.

    Article  MATH  Google Scholar 

  26. Wang, Y. and Su, G.H., Experimental Investigation on Nanofluid Flow Boiling Heat Transfer in a Vertical Tube under Different Pressure Conditions, Exp. Thermal Fluid Sci., 2016, vol. 77, pp. 116–123.

    Article  Google Scholar 

  27. Ahmadi, M. and Willing, G., Heat Transfer Measurment in Water Based Nanofluids, Int. J. Heat Mass Transfer, 2018, vol. 118, pp. 40–47.

    Article  Google Scholar 

  28. Fisher, E.G., Extrusion of Plastics, New York: Wiley, 1976.

    Google Scholar 

  29. Rauwendaal, C., Polymer Extrusion, Carl Hanser Verlag, 2014.

    Book  Google Scholar 

  30. Hiemenz, K., Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder, Dinglers Polytech. J., 1911, vol. 326, pp. 321–324.

    Google Scholar 

  31. Homann, F., Der Einfluss grosser Zähigkeit bei der Strömung um den Zylinder und um die Kugel, ZAMM–J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik, 1936, vol. 16, no. 3, pp. 153–164.

    Article  ADS  MATH  Google Scholar 

  32. Howarth, F.L., RS, “CXLIV. The Boundary Layer in Three Dimensional Flow—Part II. The Flow near a Stagnation Point,” London, Edinburgh, Dublin Philos. Mag. J. Sci., 1951, vol. 42, pp. 1433–1440.

    Article  MathSciNet  MATH  Google Scholar 

  33. Naganthran, K., Nazar, R., and Pop, I., A Study on Non-Newtonian Transport Phenomena in a Mixed Convection Stagnation Point Flow with Numerical Simulation and Stability Analysis, The Eur. Phys. J. Plus, 2019, vol. 134, no. 3, pp. 1–14.

    Article  Google Scholar 

  34. Sparrow, E.M., Quack, H., and Boerner, C.J., Local Nonsimilarity Boundary-Layer Solutions, AIAA J., 1970, vol. 8, no. 11, pp. 1936–1942.

    Article  ADS  MATH  Google Scholar 

  35. Farooq, U., Munir, S., Malik, F., Ahmad, B., and Lu, D., Aspects of Entropy Generation for the Non-Similar Three-Dimensional Bioconvection Flow of Nanofluids, AIP Adv., 2020, vol. 10, no. 7, p. 075110.

    Article  ADS  Google Scholar 

  36. Sardar, H., Ahmad, L., Khan, M., and Alshomrani, A.S. Investigation of Mixed Convection Flow of Carreau Nanofluid over a Wedge in the Presence of Soret and Dufour Effects, Int. J. Heat Mass Transfer, 2019, vol. 137, pp. 809–822.

    Article  Google Scholar 

  37. Hossain, M.A., Vafai, K., and Khanafer, K.M., Non-Darcy Natural Convection Heat and Mass Transfer along a Vertical Permeable Cylinder Embedded in a Porous Medium, Int. J. Thermal Sci., 1999, vol. 38, no. 10, pp. 854–862.

    Article  Google Scholar 

  38. Raees, A., Farooq, U., Hussain, M., Khan, W.A., and Farooq, F.B., Non-Similar Mixed Convection Analysis for Magnetic Flow of Second-Grade Nanofluid over a Vertically Stretching Sheet, Comm. Theor. Phys., 2021, vol. 73, no. 6, p. 065801.

    Article  ADS  MathSciNet  Google Scholar 

  39. Hussain, M., Cui, J., Farooq, U., Ahmed Rabie, M.E., and Muhammad, T., Nonsimilar Modeling and Numerical Simulations of Electromagnetic Radiative Flow of Nanofluid with Entropy Generation. Mathematical Problems in Engineering, 2022.

  40. Oztop, H.F., and Abu-Nada, E., Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled with Nanofluids, Int. J. Heat Fluid Flow, 2008, vol. 29, no. 5, pp. 1326–1336.

    Article  Google Scholar 

  41. Devi, S.U. and Devi, S.A., Heat Transfer Enhancement of Cu–Al2O3/Water Hybrid Nanofluid Flow over a Stretching Sheet, J. Nigerian Math. Soc., 2017, vol. 36, no. 2, pp. 419–433.

    MathSciNet  MATH  Google Scholar 

  42. Tiwari, R.K. and Das, M.K., Heat Transfer Augmentation in a Two-Sided Lid-Driven Differentially Heated Square Cavity Utilizing Nanofluids, Int. J. Heat Mass Transfer, 2007, vol. 50, nos. 9/10, pp. 2002–2018.

    Article  MATH  Google Scholar 

  43. Hamad, M.A.A. and Ferdows, M., Similarity Solutions to Viscous Flow and Heat Transfer of Nanofluid over Nonlinearly Stretching Sheet, Appl. Math. Mech., 2012, vol. 33, no. 7, pp. 923–930.

    Article  MathSciNet  MATH  Google Scholar 

  44. Jafar, A.B., Shafie, S., and Ullah, I., MHD Radiative Nanofluid Flow Induced by a Nonlinear Stretching Sheet in a Porous Medium, Heliyon, 2020, vol. 6, no. 6, p. e04201.

    Article  Google Scholar 

  45. Bachok, N., Ishak, A., and Pop, I., Stagnation-Point Flow over a Stretching/Shrinking Sheet in a Nanofluid, Nanoscale Res. Lett., 2011, vol. 6, no. 1, pp. 1–10.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Cui or M. Hussain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Naheed, N., Farooq, U. et al. Non-Similar Analysis of Nanofluids Flows under the Consequences of Mixed Convection with Lorentz Forces over Stretching/Shrinking Surface. J. Engin. Thermophys. 31, 704–719 (2022). https://doi.org/10.1134/S1810232822040154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232822040154

Navigation