Skip to main content
Log in

Effect of Mixing in Test Section on Hydrate Synthesis via Explosive Boiling of Liquefied Hydrate-Forming Gas in Water with Addition of SDS during Decompression

  • Published:
Journal of Engineering Thermophysics Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The present work is part of a comprehensive study to find out effective operating parameters of gas hydrate production based on explosive boiling of liquefied hydrate-forming gas in water volume under pressure relief. Earlier results showed high effectiveness and productivity of the method under study. The paper presents a study of the effect of addition of kinetic surfactant (sodium dodecyl sulfate (SDS)) on the hydrate formation method under study, as well as the influence of the intensity of mixing of the medium on the effectiveness of the hydrate formation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Sloan, E.D., Jr., and Koh, C.A., Clathrate Hydrates of Natural Gases, 3rd ed., 2008.

  2. Belosludov, R.V., Bozhko, Y.Y., Zhdanov, R.K., Subbotin, O.S., Kawazoe, Y., and Belosludov, V.R., Influence of the Water Temperature in the Working Area on the Synthesis of Gas Hydrate by the Method of Boiling-Condensation of the Hydrate-Forming Gas in the Volume of Water, Fluid Ph. Equil., 2016, vol. 413, pp. 220–228.

    Google Scholar 

  3. Belosludov, V.R. and Bozhko, Y.Y., Self-Preservation Effect Modelling in Hydrate Systems Using Lattice Dynamic Methods, J. Phys. Conf. Ser., 2018, vol. 1128, p. 012086.

    Article  Google Scholar 

  4. Sizikov, A.A., Vlasov, V.A., Stoporev, A.S., and Manakov, A.Y., Decomposition Kinetics and Self-Preservation of Methane Hydrate Particles in Crude Oil Dispersions: Experiments and Theory, Energy Fuels, 2019, vol. 33, no. 12, pp. 12353–12365.

    Article  Google Scholar 

  5. Stoporev, A.S., Manakov, A.Yu., Altunina, L.K., and Strelets, L.A., Self-Preservation of Gas Hydrate Particles Suspended in Crude Oils and Liquid Hydrocarbons: Role of Preparation Method, Dispersion Media, and Hydrate Former, Energy Fuels, 2016, vol. 30, no. 11, pp. 9014–9021.

    Article  Google Scholar 

  6. Gudmundsson, J., Mork, M., and Graff, O., Hydrate Non-Pipeline Technology, Proc. of the 4th Int. Conf. on Gas Hydrates, 2002, pp. 997–1102.

  7. Castellani, B., Morini, E., Filipponi, M., Nicolini, A., Palombo, M., Cotana, F., and Rossi, F., Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds, Sustainab., 2014, vol. 6, no. 10, pp. 6815–6829.

    Article  Google Scholar 

  8. Choi, S., Park, J., and Kang, Y. T., Experimental Investigation on CO2 Hydrate Formation/Dissociation for Cold Thermal Energy Harvest and Transportation Applications, Appl. Energy, 2019, vol. 242, pp. 1358–1368.

    Article  Google Scholar 

  9. Belosludov, V.R., Bozhko, Y.Y., Subbotin, O.S., Belosludov, R.V., Zhdanov, R.K., Gets, K.V., and Kawazoe, Y., Influence of N2on Formation Conditions and Guest Distribution of Mixed CO2+ CH4 Gas Hydrates, Molecules, 2018, vol. 23, p. 3336.

    Article  Google Scholar 

  10. Bozhko, Y.Y., Subbotin, O.S., Gets, K.V., Zhdanov, R.K., and Belosludov, V.R., Theoretical Modeling of the Gas Hydrates of Nitrous Oxide and Methane Mixtures, Mendeleev Comm., 2017, vol. 27, pp. 397–398.

    Article  Google Scholar 

  11. Zhdanov, R.K., Gets, K.V., Belosludov, V.R., Subbotin, O.S., Bozhko, Y.Y., and Belosludov, V.R., Visualization of the Synthesis of Gas Hydrate by the Method of Explosive Boiling a Hydrate-Forming Gas in the Volume of Water, Fluid Ph. Equilibr., 2017, vol. 434, pp. 87–92.

    Article  Google Scholar 

  12. Bozhko, Y.Y., Subbotin, O.S., Gets, K.V., Zhdanov, R.K., and Belosludov, V.R., Simulation of Thermobaric Conditions of the Formation, Composition, and Structure of Mixed Hydrates Containing Xenon and Nitrous Oxide, J. Struct. Chem., 2017, vol. 58, pp. 853–860.

    Article  Google Scholar 

  13. Subbotin, O.S., Bozhko, Y.Y., Zhdanov, R.K., Gets, K.V., Belosludov, V.R., Belosludov, R.V., and Kawazoe, Y., Ozone Storage Capacity in Clathrate Hydrates Formed by O3 + O2+ N2 + CO2 Gas Mixtures, Phys. Chem. Chem. Phys., 2018, vol. 20, pp. 12637–12641.

    Article  Google Scholar 

  14. Shagapov, V.S., Musakaev, N.G., and Khasanov, M.K., Self-Preservation of Gas Hydrate Particles Suspended in Crude Oils and Liquid Hydrocarbons: Role of Preparation Method, Dispersion Media, and Hydrate Former, Int. J. Heat Mass Transfer, 2015, vol. 84, pp. 1030–1039.

    Article  Google Scholar 

  15. Sagidullin, A.K., Stoporev, A.S., and Manakov, A.Yu., Effect of Temperature on the Rate of Methane Hydrate Nucleation in Water-in-Crude Oil Emulsion, Energy Fuels, 2019, vol. 33, no. 4, pp. 3155–3161.

    Article  Google Scholar 

  16. Skiba, S., Strukov, D., Sagidullin, A., et al., Impact of Biodegradation of Oil on the Kinetics of Gas Hydrate Formation and Decomposition, J. Petrol. Sci. Engin., 2020, vol. 192, p. 107211.

    Article  Google Scholar 

  17. Shestakov, V.A., Sagidullin, A.K., and Stoporev, A.S., Analysis of Methane Hydrate Nucleation in Water-in-Oil Emulsions: Isothermal vs Constant Cooling Ramp Method and New Method for Data Treatment, J. Molec. Liq., 2020, vol. 318, p. 114018.

    Article  Google Scholar 

  18. Shumskayte, M.Y., Manakov, A.Y., Sagidullin, A.K., Glinskikh, V.N., and Podenko, L.S., Melting of Tetrahydrofuran Hydrate in Pores: An Investigation by Low-Field NMR Relaxation, Marine Petrol. Geo., 2021, vol. 129, p. 105096.

    Article  Google Scholar 

  19. Faizullin, M.Z., Vinogradov, A.V., Tomin, A.S., and Koverda, V.P., Study of Condensation and Crystallization Processes during the Formation of Gas Hydrates in Supersonic Jets, High Temp., 2019, vol. 57, no. 5, pp. 731–737.

    Article  Google Scholar 

  20. Faizullin, M.Z., Vinogradov, A.V., and Koverda, V.P., Hydrate Formation in Layers of Gas-Saturated Amorphous Ice, Chem. Eng. Sci., 2015, vol. 130, pp. 135–143.

    Article  Google Scholar 

  21. Meleshkin, A.V., Bartashevich, M.V., Glezer, V.V., and Glebov, R.A., Effect of Surfactants on Synthesis of Gas Hydrates, J. Eng. Therm., 2020, vol. 9, no. 2, pp. 264–266.

    Article  Google Scholar 

  22. Meleshkin, A.V., Bartashevich, M.V., and Glezer, V.V., Hydrate Formation in Water Foam Volume, J. Eng. Therm., 2020, vol. 29, no. 2, pp. 279–284.

    Article  Google Scholar 

  23. Nakoryakov, V.E., Misyura, S.Ya, Elistratov, S.L., Manakov, A.Yu., and Shubnikov, A.E., Combustion of Methane Hydrates, J. Eng. Therm., 2013, no. 22, pp. 87–92.

  24. Misyura, S.Ya., Effect of Heat Transfer on the Kinetics of Methane Hydrate Dissociation, Chem. Phys. Lett., 2013, vol. 583, pp. 34–37.

    Article  ADS  Google Scholar 

  25. Lebedev, V.P., Lemanov, V.V., Misyura, S.Ya., and Terekhov, V.I., Effect of Flow Acceleration and Initial Turbulence Level on Velocity Fluctuations, Fluid Dyn., 1993, vol. 28, pp. 624–629.

    Article  ADS  Google Scholar 

  26. Misyura, S.Y., Effect of Various Key Factors on the Law of Droplet Evaporation on the Heated Horizontal Wall, Chem. Engin. Res. Design, 2018, vol. 129, pp. 306–313.

    Article  Google Scholar 

  27. Misyura, S.Y., Droplets Boiling Crisis of Ethanol Water Solution on Duralumin Substrate with SiO2 Nanoparticles Coating, Exp. Therm. Fluid Sci., 2016, vol. 75, pp. 43–53.

    Article  Google Scholar 

  28. Nakoryakov, V.E., Misyura, S.Ya., and Elistratov, S.L., Boiling Crisis in Droplets of Ethanol Water Solution on the Heating Surface, J. Eng. Therm., 2013, vol. 22, pp. 1–6.

    Article  Google Scholar 

  29. Meleshkin, A.V., Glezer, V.V., Bartashevich, M.V., and Kozlov, A.N., Investigating the Effect of Decompression Rate in the Synthesis of Carbon Dioxide Gas Hydrate by the Method of Explosive Boiling of a Liquefied Hydrate Gas, J. Phys.: Conf. Ser., 2019, vol. 1359, p. 012043.

  30. Meleshkin, A.V., Bartashevich, M.V., and Glezer, V.V., Investigation of the Effect of Operating Parameters on the Synthesis of Gas Hydrate by the Method Based on Self-Organizing Process of Boiling-Condensation of a Hydrate-Forming Gas in the Volume of Water, Appl. Surf. Sci., 2019, vol. 493, pp. 847–851.

    Article  ADS  Google Scholar 

  31. Meleshkin, A.V. and Marasanov, N.V., Study of Enhancement of Synthesis of Freon 134a Gas Hydrate During Boiling of Liquefied Gas with Its Simultaneous Stirring with Water, J. Eng. Therm., 2021, vol. 30, pp. 699–703.

    Article  Google Scholar 

  32. Meleshkin, A.V. and Shkoldina, A.A., Modeling of Freon 134a Gas Hydrate Synthesis via Boiling and Condensation of Gas in a Volume of Water, J. Eng. Therm., 2021, vol. 30, pp. 693–698.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Meleshkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meleshkin, A.V., Marasanov, N.V. Effect of Mixing in Test Section on Hydrate Synthesis via Explosive Boiling of Liquefied Hydrate-Forming Gas in Water with Addition of SDS during Decompression. J. Engin. Thermophys. 31, 696–703 (2022). https://doi.org/10.1134/S1810232822040142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232822040142

Navigation