Skip to main content
Log in

Problems of Identification of Distributed Parameter Models of Heat Transfer. Part 1

  • Published:
Journal of Engineering Thermophysics Aims and scope

An Erratum to this article was published on 01 March 2023

This article has been updated

Abstract

Analysis of approaches to identification of thermal conductivity equation in partial derivatives has been performed. Conditions of uniqueness of solution to this problem are considered. The relation between the method of simple iterations of search for desired functions and the steepest descent method for bound operators has been shown. A conclusion has been made on the necessity to switch to regularization methods at incompressible mapping of solution to next iteration and for unbounded operators. A computational experiment has been performed. It shows that calculation of increments of functions via differentiation of the thermal conductivity equation with the temperature increment expressed via a residual functional is not sufficient for regularization of unstable solution. A conclusion has been made on the direction of development of the iterative variation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

REFERENCES

  1. Bakhyshev, Sh.M., One-Dimensional Inverse Thermoelasticity Problems, IFZh, 1993, vol. 65, no. 1, pp. 98–104.

    Google Scholar 

  2. Tikhonov, A.N., Akimenko, V.V., Kal’ner, V.D., Glasko, V.B., Kal’ner, Yu.V., and Kulik, N.I., On Planning Some Physical Experiment on Determination of Material Parameters by Mathematical Methods, IFZh, 1991, vol. 61, no. 2, pp. 181–186.

    Google Scholar 

  3. Budnik, S.A., Nenarokomov, A.V., Prosuntsov, P.V., and Titov, D.M., Identification of Mathematical Models of Thermoelasticity. 1. Analysis and Formulation of Problem, TPT, 2017, no. 3, pp. 118–125.

  4. Matsevityi, Yu.M., Strel’nikova, E.A., Povgorodnii, V.O., Safonov, N.A., and Ganchin, V.V., Methodology for Solving Inverse Problems of Thermal Conductivity and Thermal Elasticity for Thermal Process Identification, IFZh, 2021, vol. 94, no. 5, pp. 1134–1141.

    Google Scholar 

  5. Sakalauskas, E.I. and Spyachunas, G.B., Application of Walsh Functions to Construction of Explicit Projection Algorithm for Identification of Distributed Systems, IFZh, 1988, vol. 54, no. 5, pp. 840–845.

    Google Scholar 

  6. Iskenderov, A.D., Gardashov, T.B., and Ibragimov, T.M., Explicit Solutions to Some Multidimensional Inverse Problems for Parabolic Equation Systems, IFZh, 1989, vol. 56, no. 2, pp. 319–327.

    Google Scholar 

  7. Gardashov, T.B., Solving Inverse Problems for Quasi-Linear Equation of Thermal Conductivity in Self-Similarity Mode for Multi-Dimensional Case, IFZh, 1991, vol. 61, no. 3, pp. 472–478.

    MathSciNet  Google Scholar 

  8. Chubarov, D.N. and Zhuk, V.I., Generalized Solution to Coefficient Inverse Problem of Thermal Conductivity for Half-Space with Variable Power of Local Axisymmetric Heat Sources on the Surface, TPT, 2010, vol. 2, no. 7, pp. 300–307.

    Google Scholar 

  9. Volkov, V.M., Determination of Unknown Source in Quasi-Linear Parabolic Equation, IFZh, 1989, vol. 56, no. 3, pp. 419–423.

    Google Scholar 

  10. Kerov, N.V., Solution to Two-Dimensional Heat Conductivity Problem for Domain of Complex Geometry by Integro-Interpolation Method, IFZh, 1989, vol. 56, no. 3, pp. 464–471.

    Google Scholar 

  11. Formalev, V.F., Identification of Two-Dimensional Thermal Fluxes in Anisotropic Bodies of Complex Geometry, IFZh, 1989, vol. 56, no. 3, pp. 382–386.

    Google Scholar 

  12. Kozdoba, L.A. and Mudrikov, V.N., Solution to Internal Inverse Problem for Bulk Anisotropic Body, IFZh, 1989, vol. 56, no. 3, pp. 455–458.

    Google Scholar 

  13. Artyukhin, E.A. and Okhapkin, A.S., Reconstruction of Parameters in Generalized Thermal Conductivity Equation Based on Non-Stationary Experiment Data, IFZh, 1982, vol. 42, no. 6, pp. 1013–1019.

    Google Scholar 

  14. Artyukhin, E.A., Ivanov, G.A., and Nenarokomov, A.V., Determination of Set of Thermophysical Characteristics of Materials from Non-Stationary Measurements of Temperature, TVT, 1993, vol. 31, no. 2, pp. 235–238.

    Google Scholar 

  15. Mikhalev, A.M. and Reznik, S.V., Method of Determination of Thermophysical Properties of Orthotropic Materials via Solving Two-Dimensional Inverse Problem of Thermal Conductivity, IFZh, 1989, vol. 56, no. 3, pp. 483–491.

    Google Scholar 

  16. Mavrin, S.V., Modification of Iterative Algorithm for Solving Inverse Thermal Conductivity Problem, IFZh, 1995, vol. 68, no. 3, pp. 494–499.

    Google Scholar 

  17. Borukhov, V.T. and Timoshpol’skii, V.I., Functional Identification by Gradient Methods of Non-Linear Coefficient of Thermal Conductivity. I. Conjugate Operators, IFZh, 2005, vol. 78, no. 4, pp. 68–74.

    Google Scholar 

  18. Borukhov, V.T., Timoshpol’skii, V.I., Zayats, G.M., and Tsurko, V.A., Functional Identification by Gradient Methods of Non-Linear Coefficient of Thermal Conductivity. II. Numerical Modeling, IFZh, 2005, vol. 78, no. 4, pp. 75–81.

    Google Scholar 

  19. Voskoboinikov, Yu.E. and Bronnikov, A.V., Nonlinear Regularization Algorithm for Solving One Class of Inverse Thermal Conductivity Problems, IFZh, 1989, vol. 56, no. 3, pp. 464–471.

    Google Scholar 

  20. Romanovskii, M.R., Application of A Priori Information to Ensure Identifiability of Mathematical Model, IFZh, 1989, vol. 56, no. 5, pp. 814–819.

    Google Scholar 

  21. Matsevityi, Yu.M. and Multanovskii, A.V., Solving Multi-Parametric Inverse Thermal Conductivity Problems, IFZh, 1991, vol. 60, no. 1, pp. 136–144.

    Google Scholar 

  22. Matsevityi, Yu.M. and Multanovskii, A.V., Simultaneous Identification of Thermophysical Characteristics of Superhard Materials, TPT, 1990, vol. 28, no. 5, pp. 924–929.

    Google Scholar 

  23. Matsevityi, Yu.M., Multanovskii, A.V., and Timchenko, V.M., Modelling of Thermal Processes and Identification of Local Heat Transfer Parameters by Means of Adaptive Iterative Filter, TVT, 1992, vol. 30, no. 3, pp. 82–91.

    Google Scholar 

  24. Lisker, I.S., Variational Methods of Experimental Research of Thermophysicl Properties and Thermal Analysis of Various Objects, IFZh, 2001, vol. 74, no. 2, pp. 119–126.

    Google Scholar 

  25. Zverev, V.G., Nazarenko, V.A., and Teploukhov, A.V., Identification of Thermophysical Characteristics of Materials, IFZh, 2010, vol. 83, no. 3, pp. 614–621.

    Google Scholar 

  26. Zverev, V.G., Nazarenko, V.A., and Teploukhov, A.V., Determination of Thermophysical Characteristics of Material under Thermal Influence of Constant Power, Teplofiz. Aerodin., 2011, no. 3, pp. 493–502.

  27. Diligenskaya, A.N. and Rapoport, E.Ya., Analytical Methods of Parametric Optimization in Inverse Thermal Conductivity Problems with Internal Heat Generation, IFZh, 2014, vol. 87, no. 5, pp. 1082–1089.

    Google Scholar 

  28. Rapoport, E.Ya. and Pleshivtseva, Yu.E., Models and Methods of Semi-Infinite Optimization Inverse Heat-Conduction Problems, Heat Transfer Res., 2006, vol. 37, no. 3, pp. 221–232.

    Article  Google Scholar 

  29. Diligenskaya, A.N. and Rapoport, E.Ya., Method of Minimax Optimization in Coefficient Inverse Problem of Thermal Conductivity, IFZh, 2016, vol. 89, no. 4, pp. 1007–1012.

    Google Scholar 

  30. Pilipenko, N., Parametric Identification of Differential-Difference Heat Transfer Models in Non-Stationary Thermal Measurements, Heat Transfer Res., 2008, vol. 39, no. 4, pp. 317–326.

    Article  Google Scholar 

  31. Xunliang, L., Lijun, G., and Zhi, W., A Numerical Strategy of Identifying the Shape of a Two-Dimensional Thermal Boundary with Known Temperature, Heat Transfer Res., 2016, vol. 47, no. 3, pp. 219–229.

    Article  Google Scholar 

  32. Alifanov, O.M. and Cherepanov, V.V., Mathematical Modeling of Highly Porous Fibrous Materials and Determination of Their Physical Properties, TVT, 2009, vol. 47, no. 3, pp. 463–472.

    Google Scholar 

  33. Alifanov, O.M. and Cherepanov, V.V., Identification of Models and Prediction of Physical Properties of Highly Porous Heat-Proofing Materials, IFZh, 2010, vol. 83, no. 4, pp. 720–732.

    Google Scholar 

  34. Alifanov, O.M., Budnik, S.A., Nenarokomov, A.V., and Cherepanov, V.V., Experimental and Theoretical Research of Heat Transfer Processes in Highly Porous Materials, TPT, 2011, vol. 3, no. 2, pp. 53–65.

    Google Scholar 

  35. Grishin, A.M., Kuzin, A.Ya., Sinitsyn, S.P., and Yaroslavtsev, N.A., On Solving Inverse Problems of Mechanics of Reactive Media, IFZh, 1989, vol. 56, no. 3, pp. 459–464.

    Google Scholar 

  36. Alifanov, O.M., Cherepanov, V.V., and Morzhukhina, A.V., Mathematical Modelling of Ultraporous Non-Metallic Mesh Materials, IFZh, 2015, vol. 88, no. 1, pp. 122–132.

    Google Scholar 

  37. Alifanov, O.M., Cherepanov, V.V., and Morzhukhina, A.V., Comprehensive Research on Physical Properties of Reticulated Vitreous Carbon, IFZh, 2015, vol. 88, no. 2, pp. 133–144.

    Google Scholar 

  38. Cherepanov, V.V., Identification of Possibility of Expanded Simulation Models of Ultraporous Heat-Proofing Materials, TPT, 2014, no. 6, pp. 254–268.

  39. Kuznetsova, E.L., Solving Inverse Thermal Conductivity Problems for Determination of Characteristics of Anisotropic Materials, TVT, 2011, vol. 49, no. 6, pp. 912–917.

    Google Scholar 

  40. Formalev, V.F. and Kolesnik, S.A., Methodology of Solving Inverse Coefficient Problems of Determination of Non-Linear Thermophysical Characteristics of Anisotropic Bodies, TVT, 2013, vol. 51, no. 6, pp. 875–883.

    Google Scholar 

  41. Vabishchevich, P.N. and Denisenko, A.Yu., Numerical Solving Lystationary Coefficient ITCP for Layered Media, IFZh, 1989, vol. 56, no. 3, pp. 509–513.

    Google Scholar 

  42. Artyukhin, E.A., Mamolov, V.A., and Nenarokomov, A.V., Evaluation of the Impact of Shrinkage on Effective Thermal Conductivity Coefficient of GRP, IFZh, 1989, vol. 56, no. 6, pp. 1001–1007.

    Google Scholar 

  43. Goncharov, I.V. and Makov, V.L., Solving Inverse Problem on Determination of Three Characteristics of Fiber Composite, IFZh, 1990, vol. 58, no. 3, pp. 493–499.

    Google Scholar 

  44. Ved’, V.E., Ivanov, V.A., Lushpenko, S.F., and Matsevityi, Yu.M., Determination of Thermal Conductivity of Ceramic Materials by Means of Solving Inverse Thermal Conductivity Problem, IFZh, 1991, vol. 61, no. 5, pp. 816–822.

    Google Scholar 

  45. Yankovskii, A.P., Identification of Structure of Reinforcement of Composite Constructs from Results of Thermophysical Experiments on Steady-State Temperature Fluctuations, IFZh, 2011, vol. 84, no. 2, pp. 324–333.

    Google Scholar 

  46. Alifanov, O.M., Budnik, S.A., Nenarokomov, A.V., and Netelev, A.V., Identification of Mathematical Models of Heat Transfer in Decaying Materials, TPT, 2011, vol. 3, no. 8, pp. 338–347.

    Google Scholar 

  47. Budnik, S.A., Morzhukhina, A.V., Nenarokomov, A.V., and Netelev, A.V., Identification of Thermokinetic Parameters of Decaying Thermal-Shield Materials by Method of Inverse Problems, TPT, 2016, no. 12, pp. 542–549.

  48. Grebennikov, A.I., Identification of Micro-Sized Heat-Transfer Structures by Generalized Ray Method, TPT, 2013, no. 8, pp. 361–365.

  49. Grebennikov, A., General Ray Method for Identification of Thermostatic Source Distribution in Plane Region, TPT, 2014, no. 10, pp. 467–468.

  50. Zuev, A.V., Prosuntsov, P.V., and Maiorova, I.A., Calculation and Experimental Research of Heat Transfer Processes in Highly Porous Fibrous Heat-Insulation Materials, TPT, 2014, no. 9, pp. 410–419.

  51. Prosuntsov, P.V., Parametric Identification of Thermophysical Properties of Highly Porous Partially Transparent Materials Based on the Solution of a Two-Dimensional Problem of Radiative-Conductive Heat Transfer, Heat Transfer Res., 2005, vol. 36, no. 6, pp. 481–499.

    Article  Google Scholar 

  52. Nenarokomov, A.V. and Titov, D.M., Study of Radiative and Conductive Heat Transfer by the Inverse Problem Method, Heat Transfer Res., 2006, vol. 37, no. 3, pp. 189–198.

    Article  Google Scholar 

  53. Liqiang, Z. and Luoxing, L., An Inverse Heat Conduction Model for Determining Casting/Chill Interfacial Heat Transfer Coefficient, Heat Transfer Res., 2015, vol. 46, no. 8, pp. 735–749.

    Article  Google Scholar 

  54. Sluzalec, A., Identification in Stochastic Thermodiffusion Problems, Heat Transfer Res., 2017, vol. 48, no. 1, pp. 1–8.

    Article  Google Scholar 

  55. Baranov, V.L., Zasyad’ko, A.A., and Frolov, G.A., Integral-Differential Method for Solving Inverse Coefficient Problem of Thermal Conductivity, IFZh, 2010, vol. 83, no. 1, pp. 54–63.

    Google Scholar 

  56. Romanovskii, M.R., Mathematical Modeling of Experiments with the Help of Inverse Problems, IFZh, 1989, vol. 57, no. 3, pp. 494–500.

    MathSciNet  Google Scholar 

  57. Romanovskii, M.R., Experiment Planning for Identification of Mathematical Models, IFZh, 1990, vol. 58, no. 6, pp. 1018–1026.

    Google Scholar 

  58. Rektorys, K., Variational Methods in Mathematics, Science and Engineering, 2nd ed., Dordrecht, Holland/Boston, USA: Reidel, 1980.

  59. Vikulov, A.G. and Nenarokomov, A.V., Identification of Mathematical Models of Heat Transfer in Spacecraft, IFZh, 2019, vol. 92, no. 1, pp. 32–45.

    Google Scholar 

  60. Vikulov, A.G. and Nenarokomov, A.V., Refined Solution to Variational Problem of Identification of Mathematical Models of Heat Transfer with Lumped Parameters, Teplofiz. Vys. Temp., 2019, vol. 57, no. 2, pp. 234–245.

    Google Scholar 

  61. Tikhonov, A.N. and Arsenin, V.Ya., Metody resheniya nekorrektnykh zadach (Methods of Solving Incorrect Problems), 2nd ed., Moscow: Fizmatlit, 1979.

    MATH  Google Scholar 

  62. Kalitkin, N.N., Chislennye metody (Numerical Methods), 2nd ed., St. Petersburg: BKhV-Peterburg, 2011.

    Google Scholar 

  63. Novitskii, L.A. and Kozhevnikov, I.G., Teplofizicheskie svoistva materialov pri nizkikh temperaturakh. Spavochnik (Thermophysical Properties of Materials at Low Temperatures, Handbook), Moscow: Mashinostroenie, 1975.

    Google Scholar 

  64. Alifanov, O.M., Obratnye zadachi teploobmena (Inverse Heat Transfer Problems), Moscow: Mashinostroenie, 1988.

    Google Scholar 

  65. Alifanov, O.M., Vabishchevich, P.N., Mikhailov, V.V., et al., Osnovy identifikatsii i proektirovaniya teplovykh protsessov i sistem (Basics of Identification and Design of Thermal Processes and Systems), Moscow: Logos, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Vikulov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alifanov, O.M., Nenarokomov, A.V. & Vikulov, A.G. Problems of Identification of Distributed Parameter Models of Heat Transfer. Part 1. J. Engin. Thermophys. 31, 609–640 (2022). https://doi.org/10.1134/S1810232822040087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232822040087

Navigation