Skip to main content
Log in

Experimental Study of Kerosene Combustion with Steam Injection in Laboratory Burner

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

Thermotechnical and environmental parameters were measured during kerosene combustion at injection of superheated steam into the combustion zone. The studies were carried out in a laboratory burner, i.e., a new method of combustion of fuel sprayed with steam was implemented. Experimental data have been obtained for various concentrations of steam in the mixture with the fuel. The content of toxic substances in the exhaust gases was reduced due to the steam injection: up to 70% for CO and up to 95% for NOx. The parameters of kerosene combustion for regimes with spraying by jets of superheated steam and heated air were compared. The advantages of the proposed method of combustion with steam have been shown. Minimum emissions of 0.11 g/kg for CO and 0.89 g/kg for NOx at a high combustion efficiency of kerosene of \(\sim 44.5\) MJ/kg and a power of 15–18 kW have been achieved at a steam concentration of 36%; they meet the environmental standard EN 267. The results obtained indicate effectiveness of steam application for reducing emission of toxic combustion products at kerosene combustion. Experimental data are needed to verify the results of numerical simulation in the calculation of low-emission combustion chambers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Zhao, Y., He, X., Li, M., Lu, R., and Yao, K., Ignition, Efficiency and Emissions of RP-3 Kerosene in a Three-Staged Multi-Injection Combustor, Fuel Process Technol., 2021, vol. 213, p. 106635; https://doi.org/ 10.1016/J.FUPROC.2020.106635.

    Article  Google Scholar 

  2. Zhao, Z. and Cui, H., Numerical Investigation on Combustion Processes of an Aircraft Piston Engine Fueled with Aviation Kerosene and Gasoline, Energy, 2022, vol. 239, p. 122264; https://doi.org/10.1016/ J.ENERGY.2021.122264.

    Article  Google Scholar 

  3. Sharafoddini, R., Habibi, M., and Pirmohammadi, M., Numerical Study of Water Vapor Injection in the Combustion Chamber to Reduce Gas Turbine Fuel Consumption, J. Appl. Fluid Mech., 2020, vol. 13, pp. 1047–1054; https://doi.org/10.29252/JAFM.13.03.30466.

    Article  Google Scholar 

  4. Jürgens, S., Oßwald, P., Selinsek, M., Piermartini, P., Schwab, J., Pfeifer, P., et al., Assessment of Combustion Properties of Non-Hydroprocessed Fischer-Tropsch Fuels for Aviation, Fuel Process Technol., 2019, vol. 193, pp. 232–243; https://doi.org/10.1016/J.FUPROC.2019.05.015.

    Article  Google Scholar 

  5. Ilbas, M., Kumuk., O., and Karyeyen, S., Numerical Study of a Swirl Gas Turbine Combustor for Turbulent Air and Oxy-Combustion of Ammonia/Kerosene Fuels, Fuel, 2021, vol. 304, p. 121359; https://doi.org/ 10.1016/J.FUEL.2021.121359.

    Article  Google Scholar 

  6. Wang, C., Zhang, F., Wang, E., Yu, C., Gao, H., Liu, B., et al., Experimental Study on Knock Suppression of Spark-Ignition Engine Fuelled with Kerosene via Water Injection, Appl. Energy, 2019, vol. 242, pp. 248–259; https://doi.org/10.1016/j.apenergy.2019.03.123.

    Article  Google Scholar 

  7. Li, J., Zhou, L., Zhao, Z., Wang, X., and Zhang, F., Research on Knocking Characteristics of Kerosene Spark-Ignition Engine for Unmanned Aerial Vehicle (UAV) by Numerical Simulation, Therm. Sci. Eng. Prog., 2019, vol. 9, pp. 1–10; https://doi.org/10.1016/J.TSEP.2018.10.014.

    Article  Google Scholar 

  8. Fratita, M., Popescu, F., Martins, J., Brito, F.P., and Costa, T., Water Injection as a Way for Pollution Control, Energy Rep., 2021, vol. 7, pp. 543–549; https://doi.org/10.1016/J.EGYR.2021.07.099.

    Article  Google Scholar 

  9. Alekseenko, S.V., Anufriev, I.S., Glavniy, V.G., Krasinsky, D.V., Rakhmanov, V.V., Salomatov, V.V., et al., Study of 3D Flow Structure and Heat Transfer in a Vortex Furnace, Heat Transfer Res., 2016, vol. 47, pp. 653–667; https://doi.org/10.1615/HeatTransRes.2016015721.

    Article  Google Scholar 

  10. Amani, E., Akbari, M.R., and Shahpouri, S., Multi-Objective CFD Optimizations of Water Spray Injection in Gas-Turbine Combustors, Fuel, 2018, vol. 227, pp. 267–278; https://doi.org/10.1016/J.FUEL.2018.04.093.

    Article  Google Scholar 

  11. Chybowski, L., Laskowski, R., and Gawdzińska, K., An Overview of Systems Supplying Water into the Combustion Chamber of Diesel Engines to Decrease the Amount of Nitrogen Oxides in Exhaust Gas, J. Mar. Sci. Technol., 2015, vol. 20, pp. 393–405; https://doi.org/10.1007/S00773-015-0303-8/FIGURES/17.

    Article  Google Scholar 

  12. International Energy Agency; https://www.iea.org/.

  13. da Rocha, D.D., de Castro Radicchi, F., Lopes, G.S., Brunocilla, M.F., de Ferreira Gomes, P.C., Santos, N.D.S.A., et al., Study of the Water Injection Control Parameters on Combustion Performance of a Spark-Ignition Engine, Energy, 2021, vol. 217, p. 119346; https://doi.org/10.1016/J.ENERGY.2020.119346.

    Article  Google Scholar 

  14. Pavri, R. and Moore, G.D., GE Power Systems Gas Turbine Emissions and Control, Atlanta, GA, 2001.

  15. Fan, Y., Wu, T., Xiao, D., Xu, H., Li, X., and Xu, M., Effect of Port Water Injection on the Characteristics of Combustion and Emissions in a Spark Ignition Direct Injection Engine, Fuel, 2021, vol. 283, p. 119271; https://doi.org/10.1016/J.FUEL.2020.119271.

    Article  Google Scholar 

  16. Sehat, A., Ommi, F., and Saboohi, Z., Effects of Steam Addition and/or Injection on the Combustion Characteristics: A Review, Therm. Sci., 2021, vol. 25, pp. 1625–1652; https://doi.org/10.2298/TSCI191030452S.

    Article  Google Scholar 

  17. Hasan, A. and Haidn, O.J., Combustion of Kerosene Jet A Fuel and Superheated Steam Injection in an Aviation Turboshaft Engine: Improving Power Output and Reducing Emissions, J. Inst. Eng. Ser. C, 2021, vol. 102, pp. 275–281; https://doi.org/10.1007/S40032-020-00643-X/TABLES/5.

    Article  ADS  Google Scholar 

  18. Xue, R., Hu, C., Sethi, V., Nikolaidis, T., and Pilidis, P., Effect of Steam Addition on Gas Turbine Combustor Design and Performance; Appl. Therm. Eng., 2016, vol. 104, pp. 249–257; https://doi.org/ 10.1016/J.APPLTHERMALENG.2016.05.019.

    Article  Google Scholar 

  19. Mohapatra, S., Garnayak, S., Lee, B.J., Elbaz, A.M., Roberts, W.L., Dash, S.K., et al., Numerical and Chemical Kinetic Analysis to Evaluate the Effect of Steam Dilution and Pressure on Combustion of n-Dodecane in a Swirling Flow Environment, Fuel, 2021, vol. 288, p. 119710; https://doi.org/10.1016/j.fuel.2020.119710.

    Article  Google Scholar 

  20. Benini, E., Pandolfo, S., and Zoppellari, S., Reduction of NO Emissions in a Turbojet Combustor by Direct Water/Steam Injection: Numerical and Experimental Assessment, Appl. Therm. Eng., 2009, vol. 29, pp. 3506–3510; https://doi.org/10.1016/j.applthermaleng.2009.06.004.

    Article  Google Scholar 

  21. Furuhata, T., Kawata, T., Mizukoshi, N., and Arai, M., Effect of Steam Addition Pathways on NO Reduction Characteristics in a Can-Type Spray Combustor, Fuel, 2010, vol. 89, pp. 3119–3126; https://doi.org/ 10.1016/j.fuel.2010.05.018.

    Article  Google Scholar 

  22. Marchionna, N.R., Diehl, L.A., and Trout, A.M., The Effect of Water Injection on Nitric Oxide Emissions of a Gas Turbine Combustor Burning ASTM Jet-A Fuel, 1973.

  23. Manipurath, S.S., Experimental Study of Superheated Kerosene Jet Fuel Sprays from a Pressure-Swirl Nozzle, Proc. ASME Turbo Expo., Part F130041-4B, 2017; https://doi.org/10.1115/GT2017-64846.

  24. Hummel, S., Berner, H.J., Altenschmidt, F., Schenk, M., and Bargende, M., Investigations on the Spray-Atomization of Various Fuels for an Outwardly Opening Piezo Injector for the Application to a Pilot Injection Passenger Car Gas Engine, SAE Tech. Pap., 2020; https://doi.org/10.4271/2020-01-2117.

    Article  Google Scholar 

  25. Mlkvik, M., Jedelsky, J., Karbstein, H.P., and Gaukel, V., Spraying of Viscous Liquids: Influence of Fluid-Mixing Mechanism on the Performance of Internal-Mixing Twin-Fluid Atomizers, Appl. Sci., 2020, vol. 10, p. 5249; https://doi.org/10.3390/APP10155249.

    Article  Google Scholar 

  26. Pereira, G.G., Cleary, P.W., and Serizawa, Y., Prediction of Fluid Flow through and Jet Formation from a High Pressure Nozzle Using Smoothed Particle Hydrodynamics, Chem. Eng. Sci., 2018, vol. 178, pp. 12–26; https://doi.org/10.1016/J.CES.2017.12.033.

    Article  Google Scholar 

  27. Hede, P.D., Bach, P., and Jensen, A.D., Two-Fluid Spray Atomisation and Pneumatic Nozzles for Fluid Bed Coating/Agglomeration Purposes: A Review, Chem. Eng. Sci., 2008, vol. 63, pp. 3821–3842; https://doi.org/ 10.1016/J.CES.2008.04.014.

    Article  Google Scholar 

  28. Alekseenko, S.V., Anufriev, I.S., Dekterev A.A., Kuznetsov, V.A., Maltsev, L.I., Minakov, A.V., et al., Experimental and Numerical Investigation of Aerodynamics of a Pneumatic Nozzle for Suspension Fuel, Int. J. Heat. Fluid Flow, 2019, vol. 77, pp. 288–298; https://doi.org/10.1016/ J.IJHEATFLUIDFLOW.2019.04.013.

    Article  Google Scholar 

  29. Anufriev, I.S., Review of Water/Steam Addition in Liquid-Fuel Combustion Systems for NOx Reduction: Waste-to-Energy Trends, Renew. Sustain. Energy Rev., 2021, vol. 138, p. 110665; https://doi.org/ 10.1016/j.rser.2020.110665.

    Article  Google Scholar 

  30. Anufriev, I.S., Shadrin, E.Y., Kopyev, E.P., Alekseenko, S.V., and Sharypov, O.V., Study of Liquid Hydrocarbons Atomization by Supersonic Air or Steam Jet, Appl. Therm. Eng., 2019, vol. 163, p. 114400; https://doi.org/10.1016/j.applthermaleng.2019.114400.

    Article  Google Scholar 

  31. Anufriev, I.S., Alekseenko, S.V., Sharypov, O.V., and Kopyev, E.P., Diesel Fuel Combustion in a Direct-Flow Evaporative Burner with Superheated Steam Supply, Fuel, 2019, vol. 254, p. 115723; https://doi.org/ 10.1016/j.fuel.2019.115723.

    Article  Google Scholar 

  32. Donohoe, N., Heufer, K.A., Aul, C.J., Petersen, E.L., Bourque, G., Gordon, R., et al., Influence of Steam Dilution on the Ignition of Hydrogen, Syngas and Natural Gas Blends at Elevated Pressures, Combust. Flame, 2015, vol. 162, pp. 1126–1135; https://doi.org/10.1016/j.combustflame.2014.10.005.

    Article  Google Scholar 

  33. Anufriev, I.S. and Kopyev, E.P., Diesel Fuel Combustion by Spraying in a Superheated Steam Jet, Fuel Process Technol., 2019;, vol. 92, pp. 154–169; https://doi.org/10.1016/j.fuproc.2019.04.027.

    Article  Google Scholar 

  34. Anufriev, I.S., Kopyev, E.P., Sadkin, I.S., and Mukhina, M.A., Diesel and Waste Oil Combustion in a New Steam Burner with Low NOx Emission, Fuel, 2021, vol. 290, p. 120100; https://doi.org/10.1016/ j.fuel.2020.120100.

    Article  Google Scholar 

  35. Anufriev, I., Kovyev, E., Alekseenko, S., Sharypov, O., Butakov, E., Vigriyanov, M., et al., Cleaner Crude Oil Combustion during Superheated Steam Atomization, Therm. Sci., 2021, vol. 25, pp. 331–345; https:// doi.org/10.2298/tsci200509209a.

    Article  Google Scholar 

  36. Anufriev, I.S., Kopyev, E.P., Sadkin, I.S., and Mukhina, M.A., NOx Reduction by Steam Injection Method during Liquid Fuel and Waste Burning, Process Saf. Environ. Prot., 2021, vol. 152, pp. 240–248; https://doi.org/10.1016/j.psep.2021.06.016.

    Article  Google Scholar 

  37. Vigriyanov, M.S., Salomatov, V.V., and Alekseenko, S.V., RF Patent 2219435, 2003.

  38. Anufriev, I.S., Shadrin, E.Y., Kopyev, E.P., and Sharypov, O.V., Experimental Investigation of Size of Fuel Droplets Formed by Steam Jet Impact, Fuel, 2021, vol. 303, p. 121183; https://doi.org/10.1016/ J.FUEL.2021.121183.

    Article  Google Scholar 

  39. Danis, A.M., Namer, I., and Cernansky, N.P., Droplet Size and Equivalence Ratio Effects on Spark Ignition of Monodisperse N-Heptane and Methanol Sprays, Combust. Flame, 1988, vol. 74, pp. 285–294; https://doi.org/10.1016/0010-2180(88)90074-0.

    Article  Google Scholar 

  40. Anufriev, I.S., Alekseenko, S.V., Kopyev, E.P., and Sharypov, O.V., Combustion of Substandard Liquid Hydrocarbons in Atmosphere Burners with Steam Gasification, J. Eng. Therm., 2019, vol. 28, pp. 324–331; https://doi.org/10.1134/S1810232819030032.

    Article  Google Scholar 

  41. Alekseenko, S.V., Anufriev, I.S., Vigriyanov, M.S., Kopyev, E.P., and Sharypov, O.V., Characteristics of Diesel Fuel Combustion in a Burner with Injection of a Superheated Steam Jet, Combust. Explos. Shock Waves, 2016, vol. 52, pp. 286–293; https://doi.org/10.1134/S0010508216030059.

    Article  Google Scholar 

  42. DIN EN 267:2011-11. Automatic Forced Draught Burners for Liquid Fuels.

  43. Anufriev, I.S., Krasinsky, D.V., Shadrin, E.Y., Kopyev, E.P., and Sharypov, O.V., Investigation of the Structure of the Gas Flow from the Nozzle of a Spray-Type Burner, Thermophys. Aeromech., 2019, vol. 26, pp. 657–672; https://doi.org/10.1134/S0869864319050044.

    Article  ADS  Google Scholar 

  44. Minakov, A.V., Anufriev, I.S., Kuznetsov, V.A., Dekterev, A.A., Kopyev, E.P., and Sharypov, O.V., Combustion of Liquid Hydrocarbon Fuel in an Evaporative Burner with Forced Supply of Superheated Steam and Air to the Reaction Zone, Fuel, 2022, vol. 309, p. 122181; https://doi.org/10.1016/J.FUEL.2021.122181.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Shadrin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopyev, E.P., Anufriev, I.S., Sadkin, I.S. et al. Experimental Study of Kerosene Combustion with Steam Injection in Laboratory Burner. J. Engin. Thermophys. 31, 589–602 (2022). https://doi.org/10.1134/S1810232822040063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232822040063

Navigation