Skip to main content
Log in

Experimental Study of Thermal Conductivity and Viscosity of Water-Based MWCNT-Y2O3 Hybrid Nanofluid with Surfactant

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

There is an overwhelming demand in many solar applications to evaluate and improve the thermal properties (dynamic viscosity and thermal conductivity) of working fluids to ensure that those fluids are the most efficient. This can be achieved via scattering of tiny solid (mono or hybrid) nanomaterials into conventional fluids. In this experimental study, the thermal properties of a distilled water-based MWCNT+Y2O3 combination with a 20:80 weight ratio were experimentally investigated. The proposed hybrid nanofluid, prepared by a two-step method, with Gum Arabic as a surfactant, had half total volume concentrations of (0.01–0.2% vol) in the temperature range of 20–60°C, where stability has been reached and checked with various technics. The results demonstrate that the thermal conductivity coefficient increases with both temperature and concentration, especially at high concentrations and high temperatures. The maximum enhancement observed reaches 13% at a volume concentration of 0.2% and temperature of 60°C. As for the viscosity, the relative viscosity was obtained for various temperatures and concentrations, the maximum results reaching 8.85 at a concentration equal to 0.2%. Finally, correlations for the hybrid nanofluid thermal conductivity ratio and relative viscosity were suggested under the mentioned limitations, and the calculated experimental results demonstrate good accuracy with the proposed correlations with R2 = 0.99 for the thermal conductivity ratio and R2 = 0.95 for the relative viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

REFERENCES

  1. Kamel, M.S., Al-Oran, O., and Lezsovits, F., Thermal Conductivity of Al2O3 and CeO2 Nanoparticles and Their Hybrid Based Water Nanofluids: An Experimental Study, Period. Polytech. Chem. Eng., 2021, vol. 65, no. 1, pp. 50–60.

    Article  Google Scholar 

  2. Al-Oran, O. and Lezsovits, F., A Hybrid Nanofluid of Alumina and Tungsten Oxide for Performance Enhancement of a Parabolic Trough Collector under the Weather Conditions of Budapest, Appl. Sci., 2021, vol. 11, no. 11, p. 4946.

    Article  Google Scholar 

  3. Raman, N.S., Prabhu, K.S., and Kandasamy, R., Heat Transfer Effects on Hiemenz Flow of Nanofluid over a Porous Wedge Sheet in the Presence of Suction/Injection Due to Solar Energy: Lie Group Transformation, J. Eng. Phys. Thermophys., 2014, vol. 23, no. 1, pp. 66–78.

    Article  Google Scholar 

  4. Al-Oran, O. and Lezsovits, F., Enhance Thermal Efficiency of Parabolic Trough Collector Using Tungsten Oxide/Syltherm 800 Nanofluid, Pollack Period., 2020, vol. 15, no. 2, pp. 187–198.

    Article  Google Scholar 

  5. Jakhar, S., Paliwal, M.K., and Purohit, N., Assessment of Alumina/Water Nanofluid in a Glazed Tube and Sheet Photovoltaic/Thermal System with Geothermal Cooling, J. Therm. An. Calorim., 2021, pp. 1–18.

  6. Meena, P., et al., Enhancement of the Performance Heat Transfer of a Thermosyphon with Fin and without Fin Heat Exchangers Using Cu-Nanofluid as Working Fluids, J. Eng. Phys. Thermophys., 2014, vol. 23, no. 4, pp. 331–340.

    Article  Google Scholar 

  7. Kaood, A., et al., Performance Analysis and Particle Swarm Optimization of Molten Salt-Based Nanofluids in Parabolic Trough Concentrators, Renew. Energy, 2021, vol. 177, pp. 1045–1062.

    Article  Google Scholar 

  8. Minea, A. and Moldoveanu, M., Studies on Al2O3, CuO, and TiO2 Water-Based Nanofluids: A Comparative Approach in Laminar and Turbulent Flow, J. Eng. Phys. Thermophys., 2017, vol. 26, no. 2, pp. 291–301.

    Article  Google Scholar 

  9. Al-Oran, O. and Lezsovits, F., Thermal Performance of Inserting Hybrid Nanofluid in Parabolic Trough Collector, Pollack Period., 2021.

  10. Allahyari, S., et al., Investigating the Effects of Nanoparticles Mean Diameter on Laminar Mixed Convection of a Nanofluid Through an Inclined Tube with Circumferentially Nonuniform Heat Flux, J. Eng. Phys. Thermophys., 2016, vol. 25, no. 4, pp. 563–575.

    Article  MathSciNet  Google Scholar 

  11. Asadi, A., et al., The Effect of Surfactant and Sonication Time on the Stability and Thermal Conductivity of Water-Based Nanofluid Containing Mg(OH) 2 Nanoparticles: An Experimental Investigation, Int. J. Heat Mass Transfer, 2017, vol. 108, pp. 191–198.

    Article  Google Scholar 

  12. Babar, H. and Ali, H.M., Towards Hybrid Nanofluids: Preparation, Thermophysical Properties, Applications, and Challenges, J. Mol. Liq., 2019, vol. 281, pp. 598–633.

    Article  Google Scholar 

  13. Noorzadeh, S., et al., Thermal Conductivity, Viscosity and Heat Transfer Process in Nanofluids: A Critical Review, J. Compos. Compd., 2020, vol. 2, no. 5, pp. 175–192.

    Article  Google Scholar 

  14. Al-Oran, O. and Lezsovits, F., Recent Experimental Enhancement Techniques Applied in the Receiver Part of the Parabolic Trough Collector–A Review, Int. Rev. Appl. Sci. Eng., 2020, vol. 11, no. 3; DOI:10.1556/1848.2020.00055.

    Article  Google Scholar 

  15. Said, Z., et al., Optimizing Density, Dynamic Viscosity, Thermal Conductivity and Specific Heat of a Hybrid Nanofluid Obtained Experimentally via ANFIS-Based Model and Modern Optimization, J. Mol. Liq., 2021, vol. 321, p. 114287.

    Article  Google Scholar 

  16. Sadri, R., et al., An Experimental Study on Thermal Conductivity and Viscosity of Nanofluids Containing Carbon Nanotubes, Nanoscale Res. Lett., 2014, vol. 9, no. 1, pp. 1–16.

    Article  Google Scholar 

  17. Phuoc, T.X., Massoudi, M., and Chen, R.-H., Viscosity and Thermal Conductivity of Nanofluids Containing Multi-Walled Carbon Nanotubes Stabilized by Chitosan, Int. J. Therm. Sci., 2011, vol. 50, no. 1, pp. 12–18.

    Article  Google Scholar 

  18. Chopkar, M., Das, P., and Manna, I., Thermal Characterization of a Nanofluid Comprising Nanocrystalline ZrO2 Dispersed in Water and Ethylene Glycol, Philos Mag., 2007, vol. 87, no. 29, pp. 4433–4444.

    Article  ADS  Google Scholar 

  19. Devarajan, M., et al., Thermophysical Properties of CNT and CNT/Al2O3 Hybrid Nanofluid, Micro Nano Lett., 2018, vol. 13, no. 5, pp. 617–621.

    Article  Google Scholar 

  20. Gupta, N., Gupta, S.M., and Sharma, S., Preparation of Stable Metal/COOH-MWCNT Hybrid Nanofluid, Mater. Today: Proc., 2020, vol. 36, pp. 649–656.

    Google Scholar 

  21. Kumar, D.D. and Arasu, A.V., A Comprehensive Review of Preparation, Characterization, Properties and Stability of Hybrid Nanofluids, Renew. Sustain. Energy Rev., 2018, vol. 81, pp. 1669–1689.

    Article  Google Scholar 

  22. Nine, M.J., et al., Investigation of Al2O3-MWCNTs Hybrid Dispersion in Water and Their Thermal Characterization, J. Nanosci. Nanotechnol., 2012, vol. 12, no. 6, pp. 4553–4559.

    Article  Google Scholar 

  23. Asadi, A., et al., Heat Transfer Efficiency of Al2O3-MWCNT/Thermal Oil Hybrid Nanofluid as a Cooling Fluid in Thermal and Energy Management Applications: An Experimental and Theoretical Investigation, Int. J. Heat Mass Transfer, 2018, vol. 117, pp. 474–486.

    Article  Google Scholar 

  24. Zareie, A. and Akbari, M., Hybrid Nanoparticles Effects on Rheological Behavior of Water-EG Coolant Under Different Temperatures: An Experimental Study, J. Mol. Liq., 2017, vol. 230, pp. 408–414.

    Article  Google Scholar 

  25. Esfe, M.H. and Esfandeh, S., Investigation of Rheological Behavior of Hybrid Oil Based Nanolubricant-Coolant Applied in Car Engines and Cooling Equipments, Appl. Therm. Eng., 2018, vol. 131, pp. 1026–1033.

    Article  Google Scholar 

  26. Esfe, M.H., et al., A Novel Applicable Experimental Study on the Thermal Behavior of SWCNTs (60%)-MgO (40%)/EG Hybrid Nanofluid by Focusing on the Thermal Conductivity, Powder Technol., 2019, vol. 342, pp. 998–1007.

    Article  Google Scholar 

  27. Tiwari, A.K., et al., 4S Consideration (Synthesis, Sonication, Surfactant, Stability) for the Thermal Conductivity of CeO2 with MWCNT and Water Based Hybrid Nanofluid: An Experimental Assessment, Coll. Surf., Physic. Eng. Asp., 2021, vol. 610, p. 125918.

    Article  Google Scholar 

  28. Al-Oran, O., Lezsovits, F., and Aljawabrah, A., Exergy and Energy Amelioration for Parabolic Trough Collector Using Mono and Hybrid Nanofluids, J. Therm. An. Calorim., 2020, vol. 140, no. 3, pp. 1579–1596.

    Article  Google Scholar 

  29. Bellos, E. and Tzivanidis, C., Thermal Analysis of Parabolic Trough Collector Operating with Mono and Hybrid Nanofluids, Sust. Energy Technol. Assess., 2018, vol. 26, pp. 105–115.

    Article  Google Scholar 

  30. Inc., U.R.N. Nanomaterials Catalog, 2021; available from: https://www.us-nano.com/home

  31. Sharma, S. and Gupta, S.M., Preparation and Evaluation of Stable Nanofluids for Heat Transfer Application: A Review, Exp. Therm. Fluid Sci., 2016, vol. 79, pp. 202–212.

    Article  Google Scholar 

  32. Javadian, S., et al., Dispersion Stability of Multi-Walled Carbon Nanotubes in Catanionic Surfactant Mixtures, Coll. Surf. Physic. Eng. Asp., 2017, vol. 531, pp. 141–149.

    Article  Google Scholar 

  33. Lemmon, E.W, McLinden, M.O., and Friend, D.G., Thermophysical Properties of Fluid Systems, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, 2005.

  34. Lanjewar, A., et al., Intensified Thermal Conductivity and Convective Heat Transfer of Ultrasonically Prepared CuO–Polyaniline Nanocomposite Based Nanofluids in Helical Coil Heat Exchanger, Period. Polytech. Chem. Eng., 2020, vol. 64, no. 2, pp. 271–282.

    Article  Google Scholar 

  35. Moldoveanu, G.M., et al., Al2O3/TiO2 Hybrid Nanofluids Thermal Conductivity, J. Therm. An. Calorim., 2019, vol. 137, no. 2, pp. 583–592.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Al-Oran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Oran, O., Lezsovits, F. Experimental Study of Thermal Conductivity and Viscosity of Water-Based MWCNT-Y2O3 Hybrid Nanofluid with Surfactant. J. Engin. Thermophys. 31, 98–110 (2022). https://doi.org/10.1134/S1810232822010088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232822010088

Navigation