Skip to main content
Log in

Enhancement of Phenol Oxidation in Supercritical Water-Oxygen Fluid with Addition of Methane

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The paper presents the results of a study of co-oxidation of phenol and methane in a supercritical water-oxygen fluid at a pressure of 25 MPa, starting temperature of 773 K, and variation in the flow rate of the phenol solution (3–7 g/min), oxygen (1.66–3.33 g/min), and methane (0.18–0.54 g/min). The experiments were carried out with the use of a vertically arranged tubular reactor in two modes: mixing of CH4 and O2 in counter jets in an ascending co-current flow of the phenol solution, as well as mixing of CH4 and O2 streams and the phenol solution at the lower part of the reactor. Data on the composition of the oxidation products and time dependences of the temperature of thermocouples and the power of ohmic heaters have been obtained. It has been shown that in both oxidation modes, the addition of methane leads to a significant (by several orders of magnitude) decrease in the content of phenols in the water collected at the outlet of the reactor. Due to the lower residual content of phenol in the water at mixing of the streams of the reagents in the lower part of the reactor, this method can be considered as more effective in comparison with oxidation in counter jets of CH4 and O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. Prasad Mylapilli, S.V. and Reddy, S.N., Sub and Supercritical Water Oxidation of Pharmaceutical Wastewater, J. Envir. Chem. Eng., 2019, vol. 7, p. 103165.

    Article  Google Scholar 

  2. Zhang, S., Zhang, Z., Zhao, R., Gu, J., Liu, J., Örmeci, B., and Zhang, J., A Review of Challenges and Recent Progress in Supercritical Water Oxidation of Wastewater, Chem. Eng. Commun., 2017, vol. 204, pp. 265–282.

    Article  Google Scholar 

  3. Jiang, Z., Li, Y., Wang, S., Gui, C., Yang, C., and Li, J., Review on Mechanism and Kinetics for Supercritical Water Oxidation Processes, Appl. Sci., 2020, vol. 10, no. 4937.

    Article  Google Scholar 

  4. Fedyaeva, O.N. and Vostrikov, A.A., Disposal of Hazardous Organic Substances in Supercritical Water, Russ. J. Phys. Chem. B, 2012, vol. 6, pp. 884–860.

    Article  Google Scholar 

  5. Wei, N., Xu, D., Hao, B., Guo, S., Guo, Y., and Wang, S., Chemical Reactions of Organic Compounds in Supercritical Water Gasification and Oxidation, Water Res., 2021, vol. 190, no. 116634.

    Article  Google Scholar 

  6. Zhang, H., Zhang, X., Ding, L., Gong, M., Su, Y., and Wang, S., Polymerization and Oxidation of Phenols in Supercritical Water, Water Sci. Technol., 2019, vol. 80, no. 4, pp. 620–633.

    Article  Google Scholar 

  7. Gopalan, S. and Savage, P.E., Reaction-Mechanism for Phenol Oxidation in Supercritical water, J. Phys. Chem., 1994, vol. 98, pp. 12646–12652.

    Article  Google Scholar 

  8. Henrikson, J.T. and Savage, P.E., Water-Density Effects on Phenol Oxidation in Supercritical Water, AIChE J., 2003, vol. 49, pp. 718–726.

    Article  Google Scholar 

  9. Abdpour, S. and Santos, R.M., Recent Advances in Heterogeneous Catalysis for Supercritical Water Oxidation/Gasification Processes: Insight into Catalysis Development, Proc. Safety Envir. Protec., 2021, vol. 149, pp. 169–184.

    Article  Google Scholar 

  10. Reddy, S.N., Nanda, S., Hegde, U.G., Hicks, M.C., and Kozinski, J.A., Ignition in Hydrothermal Flames, RSC Adv., 2015, vol. 5, pp. 36404–36422.

    Article  ADS  Google Scholar 

  11. Zhang, J., Lu, J., Chen, S., He, D., Huang, R., and Luo, X., Experimental and Kinetics Study on Oxidation of Three-Component in Supercritical Water, Canadian J. Chem. Eng., 2019, vol. 97, no. 6, pp. 1781–1880.

    Google Scholar 

  12. Zhang, J., Wang, S., Ren, M., Lu, J., Chen, S., and Zhang, H., Effect Mechanism of Auxiliary Fuel in Supercritical Water: A Review, Ind. Eng. Chem. Res., 2019, vol. 58, no. 4, pp. 1480–1494.

    Article  Google Scholar 

  13. Vostrikov, A.A., Fedyaeva, O.N., Shishkin, A.V., Sokol, M.Y., Kolobov, F.I., and Kolobov, V.I., Partial and Complete Methane Oxidation in Supercritical Water, J. Eng. Thermophys., 2016, vol. 25, no. 4, pp. 474–484.

    Article  Google Scholar 

  14. Fedyaeva, O.N., Vostrikov, A.A., Artamonov, D.O., Shishkin, A.V., and Sokol, M.Y., Incineration of Pulp and Paper Mill Waste in Supercritical Water Using Methane as a Co-Fuel, J. Eng. Thermophys., 2021, vol. 30, no. 3, pp. 350–364.

    Article  Google Scholar 

  15. Lemmon, E.W., McLinden, M.O., and Freid, D.G., Thermophysical Properties of Fluid Systems. NIST Chemistry WebBook, NIST Standard Reference Database No. 69, Linstrom, P.J. and Mallard, W.G., Eds., National Institute of Standards and Technology, Gaithersburg MD, 2018, 20899; http://webbook.nist.gov/ chemistry/fluid/.

  16. Fedyaeva, O.N., Vostrikov, A.A., Shishkin, A.V., Sokol, M.Y., Borisova, L.S., and Kashirtsev, V.A., Conversion of Brown Coal in Sub- and Supercritical Water at Cyclic Pressurization and Depressurization, Russ. J. Phys. Chem. B, 2012, vol. 6, pp. 793–803.

    Article  Google Scholar 

  17. Lurie, Y.Y., Analyticheskaya khimiya promyshlennykh stochnykh vod (Analytical Chemistry of Industrial Wastewater), Moscow: Khimia, 1984.

    Google Scholar 

  18. Kaplan, C.R. and Kailasanath, K., Flow Field Effects on Soot Formation in Normal and Inverse Methane-Air Diffusion Flames, Combust. Flame, 2001, vol. 124, pp. 275–294.

    Article  Google Scholar 

  19. Wu, R., Xie, F., Wei, J., Song, X., Yanng, H., Lv, P., and Yu, G., Study on Soot Emission Characteristics of Methane/Oxygen Inverse Diffusion Flame, ACS Omega, 2021, vol. 6, pp. 23191–23202.

    Article  Google Scholar 

  20. Savage, P.E., Yu, J., Stylski, N., and Brock, E.E., Kinetics and Mechanisms of Methane Oxidation in Supercritical Water, J. Supercrit. Fluids, 1998, vol. 12, pp. 141–153.

    Article  Google Scholar 

  21. Savage, P.E., Rovira, J., Stylski, N., and Martino, C.J., Oxidation Kinetics for Methane/Methanol Mixtures in Supercritical Water, J. Supercrit. Fluids, 2000, vol. 17, pp. 155–170.

    Article  Google Scholar 

  22. Huelsman, C.M. and Savage, P.E., Intermediates and Kinetics for Phenol Gasification in Supercritical Water, Phys. Chem. Chem. Phys., 2012, vol. 14, pp. 2900–2910.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Fedyaeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedyaeva, O.N., Vostrikov, A.A. Enhancement of Phenol Oxidation in Supercritical Water-Oxygen Fluid with Addition of Methane. J. Engin. Thermophys. 31, 11–18 (2022). https://doi.org/10.1134/S1810232822010027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232822010027

Navigation