Skip to main content
Log in

Modeling of Freon 134a Gas Hydrate Synthesis via Boiling and Condensation of Gas in a Volume of Water

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The paper presents a theoretical assessment of the hydration mass increase with time in the gas hydrate synthesis based on the self-organizing cyclic process of boiling and condensation of the hydrate-forming gas in a volume of water. Data were obtained on the distribution of the bubbles released because of boiling of the liquefied gas at three different points in time in a real experiment. The average rate of increase in the hydration mass was determined. The hydration gain was simulated for an experiment 30 minutes long. The data obtained were compared with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. Belosludov, R.V., Bozhko, Y.Y., Zhdanov, R.K., Subbotin, O.S., Kawazoe, Y., and Belosludov, V.R., Influence of the Water Temperature in the Working Area on the Synthesis of Gas Hydrate by the Method of Boiling-Condensation of the Hydrate-Forming Gas in the Volume of Water, Fluid Ph. Equilibria, 2016, vol. 413, pp. 220–228.

    Article  Google Scholar 

  2. Belosludov, V.R. and Bozhko, Y.Y., Self-Preservation Effect Modelling in Hydrate Systems Using Lattice Dynamic Methods, J. Phys. Conf. Ser., 2018, vol. 1128, 012086.

    Article  Google Scholar 

  3. Sizikov, A.A., Vlasov, V.A., Stoporev A.S., and Manakov, A.Y., Decomposition Kinetics and Self-Preservation of Methane Hydrate Particles in Crude Oil Dispersions: Experiments and Theory, Energy Fuels, 2019, vol. 33, no. 12, pp. 12353–12365.

    Article  Google Scholar 

  4. Stoporev, A.S., A., Manakov Yu., Altunina, L.K., and Strelets, L.A., Self-Preservation of Gas Hydrate Particles Suspended in Crude Oils and Liquid Hydrocarbons: Role of Preparation Method, Dispersion Media, and Hydrate Former, Energy Fuels, 2016, vol. 30, no. 11, pp. 9014–9021.

    Article  Google Scholar 

  5. Belosludov, V.R., Bozhko, Y.Y., Subbotin, O.S., Belosludov, R.V., Zhdanov, R.K., Gets, K.V., and Kawazoe, Y., Influence of N2 on Formation Conditions and Guest Distribution of Mixed CO2 + CH4 Gas Hydrates, Molecules, 2018, vol. 23, p. 3336.

    Article  Google Scholar 

  6. Bozhko, Y.Y., Subbotin, O.S., Gets, K.V., Zhdanov, R.K., and Belosludov, V.R., Theoretical Modeling of the Gas Hydrates of Nitrous Oxide and Methane Mixtures, Mendeleev Comm., 2017, vol. 27, pp. 397–398.

    Article  Google Scholar 

  7. Zhdanov, R.K., Gets, K.V., Belosludov, V.R., Subbotin, O.S., Bozhko, Y.Y., and Belosludov, V.R., Visualization of the Synthesis of Gas Hydrate by the Method of Explosive Boiling a Hydrate-Forming Gas in the Volume of Water, Fluid Ph. Equilibria, 2017, vol. 434, pp. 87–92.

    Article  Google Scholar 

  8. Bozhko, Y.Y., Subbotin, O.S., Gets, K.V., Zhdanov, R.K., and Belosludov, V.R., Simulation of Thermobaric Conditions of the Formation, Composition, and Structure of Mixed Hydrates Containing Xenon and Nitrous Oxide, J. Struct. Chem., 2017, vol. 58, pp. 853–860.

    Article  Google Scholar 

  9. Subbotin, O.S., Bozhko, Y.Y., Zhdanov, R.K., Gets, K.V., Belosludov, V.R., Belosludov, R.V., and Kawazoe, Y., Ozone Storage Capacity in Clathrate Hydrates Formed by O3 + O2 + N2 + CO2 Gas Mixtures, Phys. Chem. Chem. Phys., 2018, vol. 20, pp. 12637–12641.

    Article  Google Scholar 

  10. Shagapov, V.S., Musakaev, N.G., and Khasanov, M.K., Self-Preservation of Gas Hydrate Particles Suspended in Crude Oils and Liquid Hydrocarbons: Role of Preparation Method, Dispersion Media, and Hydrate Former, Int. J. Heat Mass Transfer, 2015, vol. 84, pp. 1030–1039.

    Article  Google Scholar 

  11. Sagidullin, A.K., Stoporev, A.S., and Manakov, A.Yu., Effect of Temperature on the Rate of Methane Hydrate Nucleation in Water-in-Crude Oil Emulsion, Energy Fuels, 2019, vol. 33, no. 4, pp. 3155–3161.

    Article  Google Scholar 

  12. Skiba, S., Strukov, D., Sagidullin, A., et al., Impact of Biodegradation of Oil on the Kinetics of Gas Hydrate Formation and Decomposition, J. Petrol. Sci. Engin., 2020, vol. 192, p. 107211.

    Article  Google Scholar 

  13. Shestakov, V.A., Sagidullin, A.K., and Stoporev, A.S., Analysis of Methane Hydrate Nucleation in Water-in-Oil Emulsions: Isothermal vs Constant Cooling Ramp Method and New Method for Data Treatment, J. Molec. Liq., 2020, vol. 318, p. 114018.

    Article  Google Scholar 

  14. Shumskayte, M.Y., Manakov, A.Y., Sagidullin, A.K., Glinskikh, V.N., and Podenko, L.S., Melting of Tetrahydrofuran Hydrate in Pores: An Investigation by Low-Field NMR Relaxation, Marine Petrol. Geo., 2021, vol. 129, p. 105096.

    Article  Google Scholar 

  15. Faizullin, M.Z., Vinogradov, A.V., Tomin, A.S., and Koverda, V.P., Study of Condensation and Crystallization Processes During the Formation of Gas Hydrates in Supersonic Jets, High Temp., 2019, vol. 57, no. 5, pp. 731–737.

    Article  Google Scholar 

  16. Faizullin, M.Z., Vinogradov, A.V., and Koverda, V.P., Hydrate Formation in Layers of Gas-Saturated Amorphous Ice, Chem. Eng. Sci., 2015, vol. 130, pp. 135–143.

    Article  Google Scholar 

  17. Misyura, S.Y. and Donskoy, I.G., Ways to Improve the Efficiency of Carbon Dioxide Utilization and Gas Hydrate Storage at Low Temperatures, J. CO2 Util., 2019, vol. 34, pp. 313–324.

    Article  Google Scholar 

  18. Misyura, S.Y. and Donskoy, I.G., Dissociation Kinetics of Methane Hydrate and CO2 Hydrate for Different Granular Composition, Fuel, 2020, vol. 262, p. 116614.

    Article  Google Scholar 

  19. Misyura, S.Y., Efficiency of Methane Hydrate Combustion for Different Types of Oxidizer Flow, Energy, 2016, vol. 103, pp. 430–439.

    Article  Google Scholar 

  20. Misyura, S.Y., Comparing the Dissociation Kinetics of Various Gas Hydrates During Combustion: Assessment of Key Factors to Improve Combustion Efficiency, Appl. Energy, 2020, vol. 270, p. 115042.

    Article  Google Scholar 

  21. Misyura, S.Y., Dependence of Wettability of Microtextured Wall on the Heat and Mass Transfer: Simple Estimates for Convection and Heat Transfer, Int. J. Mech. Sci., 2020, vol. 170, p. 105353.

    Article  Google Scholar 

  22. Misyura, S.Y., The Influence of Characteristic Scales of Convection on Non-Isothermal Evaporation of a Thin Liquid Layer, Sci. Rep., 2018, vol. 8, p. 11521.

    Article  ADS  Google Scholar 

  23. Nakoryakov, V.E., Mezentsev, I.V., Meleshkin, A.V., Elistratov, D.S., and Manakov, A.Y., Experimental Investigation of Gas-Hydrate Formation by Underwater Boiling of a Condensed Gas Layer, J. Eng. Therm., 2015, vol. 24, no. 4, pp. 335–337.

    Article  Google Scholar 

  24. Meleshkin, A.V., Bartashevich, M.V., and Glezer, V.V., Hydrate Formation in Water Foam Volume, J. Eng. Therm., 2020, vol. 29, no. 2, pp. 279–284.

    Article  Google Scholar 

  25. Meleshkin, A.V., Bartashevich, M.V., Glezer, V.V., and Glebov, R.A., Effect of Surfactants on Synthesis of Gas Hydrates, J. Eng. Therm., 2020, vol. 9, no. 2, pp. 264–266.

    Article  Google Scholar 

  26. Meleshkin, A.V., Bartashevich, M.V., and Glezer, V.V., Investigation of the Effect of Operating Parameters on the Synthesis of Gas Hydrate by the Method Based on Self-Organizing Process of Boiling-Condensation of a Hydrate-Forming Gas in the Volume of Water, Appl Surf. Sci., 2019, vol. 493, pp. 847–851.

    Article  ADS  Google Scholar 

  27. Sun, C.Y., Chen, G.J., Ma, C.F., Huang, Q., Luo, H., and Li, Q.P., The Growth Kinetics of Hydrate Film on the Surface of Gas Bubble Suspended in Water or Aqueous Surfactant Solution, J. Cryst. Growth, 2007, vol. 306, no. 2, pp. 491–499.

    Article  ADS  Google Scholar 

  28. Englezos, P., Kalogerakis, N., Dholabhai, P.D., and Bishnoi, P.R., Kinetics of Formation of Methane and Ethane Gas Hydrates, Chem. Eng. Sci., 1987, vol. 42, no. 11, pp. 2647–2658.

    Article  Google Scholar 

  29. Vysniauskas, A. and Bishnoi, P.R., A Kinetic Study of Methane Hydrate Formation, Chem. Eng. Sci., 1983, vol. 38, no. 7, pp. 1061–1072.

    Article  Google Scholar 

  30. Sun, C.Y., Peng, B.Z., Dandekar, A., Ma, Q.L., and Chen, G.J., Studies on Hydrate Film Growth, Annual Rep. Sec. “C” (Phys. Chem.), 2010, vol. 106, pp. 77–100.

    Article  Google Scholar 

  31. Ogasawara, K., Yamasaki, A., and Teng, H., Mass Transfer from CO2 Drops Traveling in High-Pressure and Low-Temperature Water, Energy Fuels, 2001, vol. 15, no. 1, pp. 147–150.

    Article  Google Scholar 

  32. Holder, G.D. and Warzinski, R.P., Formation and Growth of CO2 Clathrate Hydrate Shells around Gas Bubbles or Liquid Drops, ACS Div. Fuel Chem., Prep., 1996, vol. 41, no. 4, pp. 1452–1457.

    Google Scholar 

  33. Mori, Y.H. and Mochizuki, T., Mass Transport across Clathrate Hydrate Films—A Capillary Permeation Model, Chem. Eng. Sci., 1997, vol. 52, no. 20, pp. 3613–3616.

    Article  Google Scholar 

  34. Sun, X., Wang, Z., Sun, B., Chen, L., and Zhang, J., Modeling of Dynamic Hydrate Shell Growth on Bubble Surface Considering Multiple Factor Interactions, Chem. Eng. J., 2018, pp. 221–233.

    Article  Google Scholar 

  35. Makogon, Y.F., Gazovye gidraty, preduprezhdenie ikh obrazovaniya i ispol’zovanie (Gas Hydrates, Prevention of Their Formation, and Use), Moscow: Nedra, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Meleshkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meleshkin, A.V., Shkoldina, A.A. Modeling of Freon 134a Gas Hydrate Synthesis via Boiling and Condensation of Gas in a Volume of Water. J. Engin. Thermophys. 30, 693–698 (2021). https://doi.org/10.1134/S1810232821040123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232821040123

Navigation